精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b的图象与反比例函数y= 的图象相交于点A(﹣2,1),点B(1,n).
(1)求此一次函数和反比例函数的解析式;
(2)请直接写出满足不等式kx+b﹣ <0的解集;
(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E(﹣a,a),如图,当曲线y= (x<0)与此正方形的边有交点时,求a的取值范围.

【答案】
(1)解:∵点A(﹣2,1)在反比例函数y= 的图象上,

∴m=﹣2×1=﹣2,

∴反比例函数解析式为y=﹣

∵点B(1,n)在反比例函数y=﹣ 的图象上,

∴﹣2=n,即点B的坐标为(1,﹣2).

将点A(﹣2,1)、点B(1,﹣2)代入y=kx+b中得:

,解得:

∴一次函数的解析式为y=﹣x﹣1


(2)解:不等式﹣x﹣1﹣(﹣ )<0可变形为:﹣x﹣1<﹣

观察两函数图象,发现:

当﹣2<x<0或x>1时,一次函数图象在反比例图象下方,

∴满足不等式kx+b﹣ <0的解集为﹣2<x<0或x>1


(3)解:过点O、E作直线OE,如图所示.

∵点E的坐标为(﹣a,a),

∴直线OE的解析式为y=﹣x.

∵四边形EFDG是边长为1的正方形,且各边均平行于坐标轴,

∴点D的坐标为(﹣a+1,a﹣1),

∵a﹣1=﹣(﹣a+1),

∴点D在直线OE上.

将y=﹣x代入y=﹣ (x<0)得:

﹣x=﹣ ,即x2=2,

解得:x=﹣ ,或x= (舍去).

∵曲线y=﹣ (x<0)与此正方形的边有交点,

∴﹣a≤﹣ ≤﹣a+1,

解得: ≤a≤ +1.

故当曲线y= (x<0)与此正方形的边有交点时,a的取值范围为 ≤a≤ +1


【解析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数系数m,从而得出反比例函数解析式;由点B在反比例函数图象上,即可求出点B的坐标,再由点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)根据两函数图象的上下关系结合交点坐标,即可得出不等式的解集;(3)过点O、E作直线OE,求出直线OE的解析式,根据正方形的性质找出点D的坐标,并验证点D在直线OE上,再将直线OE的解析式代入到反比例函数解析式中,求出交点坐标横坐标,结合函数图象以及点D、E的坐标即可得出关于a的一元一次不等式,解不等式即可得出结论.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,矩形ABCD关于y轴对称,点A,D在x轴上,BC交y轴于点F,E是OF的中点,抛物线y=ax2+bx+c经过B,E,C三点,已知点B(﹣2,﹣2),解答下列问题:

(1)填空:a= , b= , c=
(2)如图2,这P是上述抛物线上一点,连接PF并延长交抛物线于另外一点Q,PM⊥x轴于M,QN⊥x轴于N.
①求证:PM+QN=PQ;
②若PQ=m,S四边形PMNQ= m2 , 求直线PQ对应的一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.(a2b)3=a6b3
B.a6÷a2=a3(a≠0)
C.a2=﹣ (a≠0)
D. =2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.
(2)计算:π0+21 ﹣|﹣ |.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为(
A.35°
B.45°
C.55°
D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.
(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.
(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.

(1)求直线AB的解析式.
(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).
(3)求△ABE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.

查看答案和解析>>

同步练习册答案