分析 (1)如果设每件商品提高x元,可先用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.
(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x-8)[200-20(x-10)],然后化简配方,即可得y=-20(x-14)2+720,即可求得答案.
解答 解:设每件商品提高x元,
则每件利润为(10+x-8)=(x+2)元,
每天销售量为(200-20x)件,
依题意,得:(x+2)(200-20x)=700.
整理得:x2-8x+15=0.
解得:x1=3,x2=5.
∴把售价定为每件13元或15元能使每天利润达到700元;
若设每件商品降价x元,
则(2-x)(200+20x)=700.
整理得:x2+8x+15=0,
解得:x1=-3,x2=-5,
∴把售价定为每件13元或15元能使每天利润达到700元.
(2)设利润为y:
则y=(x-8)[200-20(x-10)]
=-20x2+560x-3200
=-20(x-14)2+720,
则当售价定为14元时,获得最大利润;最大利润为720元.
答:把售价定为每件13元或15元能使每天利润达到700元,将售价定位每件14元时,能使每天可获的利润最大,最大利润是720元.
点评 此题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m+3<n+3 | B. | 9m<9n | C. | -m<-n | D. | $\frac{m}{2}$<$\frac{n}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com