精英家教网 > 初中数学 > 题目详情
(2012•丽水)如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=
kx
(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.
(1)求该双曲线所表示的函数解析式;
(2)求等边△AEF的边长.
分析:(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用 待定系数法求反比例函数解析式列式计算即可得解;
(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.
解答:解:(1)过点C作CG⊥OA于点G,
∵点C是等边△OAB的边OB的中点,
∴OC=2,∠AOB=60°,
∴OG=1,CG=OG•tan60°=1•
3
=
3

∴点C的坐标是(1,
3
),
3
=
k
1
,得:k=
3

∴该双曲线所表示的函数解析式为y=
3
x


(2)过点D作DH⊥AF于点H,设AH=a,则DH=
3
a.
∴点D的坐标为(4+a,
3
a
),
∵点D是双曲线y=
3
x
上的点,
由xy=
3
,得
3
a
(4+a)=
3

即:a2+4a-1=0,
解得:a1=
5
-2,a2=-
5
-2(舍去),
∴AD=2AH=2
5
-4,
∴等边△AEF的边长是2AD=4
5
-8.
点评:本题是对反比例函数的综合考查,包括待定系数法求反比例函数解析式,等边三角形的性质,解一元二次方程,难度不大,作出辅助线,表示出点C、D的坐标是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=
3
,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.
(1)当点E是AB的中点时,线段DF的长度是
6
6

(2)若射线EF经过点C,则AE的长是
2或5
2或5

查看答案和解析>>

同步练习册答案