精英家教网 > 初中数学 > 题目详情
(2012•丽水)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=
3
,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.
(1)当点E是AB的中点时,线段DF的长度是
6
6

(2)若射线EF经过点C,则AE的长是
2或5
2或5
分析:(1)过E点作EG⊥DF,由E是AB的中点,得出DG=3,再根据∠DEG=60°得出∠DEF=120°,由tan60°=
GF
3
即可求出GF的长,进而得出结论;
(2)过点B作BH⊥DC,延长AB至点M,过点C作CM⊥AB于F,则BH=AD=
3
,再由锐角三角函数的定义求出CH及BC的长,设AE=x,则BE=6-x,利用勾股定理用x表示出DE及EF的长,再判断出△EDF∽△BCE,由相似三角形的对应边成比例即可得出关于x的方程,求出x的值即可.
解答:解:(1)如图1,过E点作EG⊥DF,
∵E是AB的中点,
∴DG=3,
∴EG=AD=
3

∴∠DEG=60°,
∵∠DEF=120°,
∴tan60°=
GF
3

解得GF=3,
∴DF=6;


(2)如图2所示:
过点B作BH⊥DC,延长AB至点M,过点C作CM⊥AB于M,则BH=AD=MF=
3

∵∠ABC=120°,AB∥CD,
∴∠BCH=60°,
∴CH=BM=
BH
tan60°
=
3
3
=1,
设AE=x,则BE=6-x,
在Rt△EFM中,EF=
(EB+BM)2+MF2
=
(6-x+1)2+(
3
)
2
=
(7-x)2+3

∵AB∥CD,
∴∠EFD=∠BEC,
∵∠DEF=∠B=120°,
∴△EDF∽△BCE,即△EDF∽△BFE
DF
EF
=
EF
BE

∴EF2=DF•BE,即(7-x)2+3=7(6-x)
解得x=2或5
故答案为:2或5.
点评:本题考查了解直角梯形及相似三角形的判定与性质,勾股定理,特殊角的三角函数值等,解题的关键是根据题意画出图形,利用数形结合求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=
kx
(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.
(1)求该双曲线所表示的函数解析式;
(2)求等边△AEF的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是(  )

查看答案和解析>>

同步练习册答案