【题目】如图,双曲线经过的顶点和的中点,轴,点的坐标为.
(1)确定的值;
(2)若点在双曲线上,求直线的解析式;
(3)计算的面积.
【答案】(1)24;(2);(3)36
【解析】
(1)将A坐标代入反比例解析式求出k的值即可;
(2)将D坐标代入反比例解析式求出m的值,确定出D坐标,设直线AD解析式为y=kx+b,将A与D坐标代入求出k与b的值,即可确定出直线AD解析式;
(3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.
解:(1)将点代入解析式,得:;
(2)将代入反比例解析式,得,
点坐标为,
设直线解析式,
将与代入得:
解得:,,
则直线解析式为;
(3)过点作轴,垂足为,延长,交轴于点,
轴,
轴
,
,
为的中点,即,
,
都在双曲线上,
,
由,得到,
则面积为36.
科目:初中数学 来源: 题型:
【题目】图1,图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1,图2中各画一条线段,各图均满足以下要求:
(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);
(2)将平行四边形分割成两个图形,都要求其中一个是轴对称图形,图1,图2的分法不相同.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,AC=BC=2,M是边AC的中点,于H.
(1)求MH的长度;
(2)求证:;
(3)若D是边AB上的点,且为等腰三角形,直接写出AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC、BC的长为方程x2﹣14x+a=0的两根,且AC﹣BC=2,D为AB的中点.
(1)求a的值.
(2)动点P从点A出发,以每秒2个单位的速度,沿A→D→C的路线向点C运动;动点Q从点B出发,以每秒3个单位的速度,沿B→C的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒…若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.
①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;
②是否存在这样的t,使得△PCQ为直角三角形?若存在,请直接写出所有符合条件的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的是小庆为庆祝中华人民共和国成立70周年设计的“70”字形,AB与大⊙O相切于点A, AO与小⊙O相交于点E,D是大⊙O上一点,CD//AB,CD过点E且交大⊙O于另一点F,OE=2.
(1)求证:CD为小⊙O的切线.
(2)当AD=AO时,求DF的长.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是_____.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=_____.
②写出该函数的一条性质_____.
③若方程x+=t有两个不相等的实数根,则t的取值范围是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com