精英家教网 > 初中数学 > 题目详情

【题目】如图1CA=CBCD=CE,∠ACB=DCE

1)求证:BE=AD

2)当α=90°时,取ADBE的中点分别为点PQ,连接CPCQPQ,如图②,判断CPQ的形状,并加以证明.

【答案】1)见解析(2)△CPQ为等腰直角三角形,理由见解析

【解析】

1)易证△ACD≌△BCE,即可求证;

2)先证明△ACP△BCQ,得CP=CQ,ACP=BCQ,再由∠ACB=90°,得出△PCQ为等腰直角三角形.

1)如图1,∵∠ACB=DCE

∴∠ACD=∠BCE

CA=CBCD=CE

△ACD≌△BCESAS

BE=AD

2)△CPQ为等腰直角三角形,

证明如图2,由(1)得BE=AD

ADBE的中点分别为点PQ

AP=BQ

△ACD≌△BCE

∠CAP=CBQ,

△ACP△BCQ

△ACP△BCQSAS

CP=CQ,∠ACP=BCQ

∵∠ACP+∠PCB=90°

∠BCQ+∠PCB=90°

∠PCQ=90°

∴△CPQ为等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)观察猜想

如图①,BAC在同一条直线上,DB⊥BC,EC⊥BC∠DAE=90°,AD=AE,BCBDCE之间的数量关系为

(2)问题解决

如图②,Rt△ABC,∠ABC=90°CB=8AB=4,以AC为直角边向外作等腰Rt△DAC连接BD,BD的长。

(3)拓展延伸

如图③,在四边形ABCD,∠ABC=∠ADC=90°CB=8.AB=4DC=DA,则BD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元.求:

1A型洗衣机和B型洗衣机的售价各是多少元?

2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,MON=30°,点A1A2A3在射线ON上,点B1B2B3在射线OM上,A1B1A2A2B2A3A3B3A4均为等边三角形,若OA1=a,则A7B7A8的边长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCABCACB=90°B=50°,点B在线段AB上,ACAB交于点O,则COA的度数是(

A.50°B.60°

C.45°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】试根据图中信息,解答下列问题.

(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;

(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,厘米,厘米,点的中点.

1)如果点在线段上以厘米秒的速度由点运动,同时点在线段上由点向点运动.

①若点的运动速度与点的运动速度相等,秒钟时,是否全等?请说明理由;

②点的运动速度与点的运动速度不相等,当点的运动速度为多少时,能够使?并说明理由;

2)若点以②中的运动速度从点出发,点以原来运动速度从点同时出发,都逆时针沿的三边运动,求多长时间点与点第一次在的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠DCE=90°CD=CEADACBEAC,垂足分别为AB

求证:①△ADC≌△BCE

AD+AB=BE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边的外角内部的一条射线,点关于的对称点为,连接,其中分别交射线于点

1)依题意补全图形;

2)若,求的大小(用含的式子表示);

3)若,求的长度(用的代数式表示).

查看答案和解析>>

同步练习册答案