精英家教网 > 初中数学 > 题目详情
2.如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3.

分析 设平移后的抛物线解析式为y=x2+2x-1+b,把点A的坐标代入进行求值即可得到b的值.

解答 解:设平移后的抛物线解析式为y=x2+2x-1+b,
把A(0,3)代入,得
3=-1+b,
解得b=4,
则该函数解析式为y=x2+2x+3.
故答案是:y=x2+2x+3.

点评 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.
(1)求证:四边形ABCE是平行四边形;
(2)若AE=6,CD=5,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是(  )
A.(1,0)B.(3,0)C.(-3,0)D.(0,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:20150+$\sqrt{12}+2×(-\frac{1}{2})$
(2)化简:(2a+1)(2a-1)-4a(a-1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.计算:|-2|+2=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解不等式组:$\left\{\begin{array}{l}{4x>2x-6}\\{\frac{x-1}{3}≤\frac{x+1}{9}}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是(  )
A.k>-1B.k≥-1C.k≠0D.k<1且k≠0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算:$\frac{{a}^{2}}{a-b}-\frac{{b}^{2}}{a-b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.圆内接四边形ABCD中,已知∠A=70°,则∠C=(  )
A.20°B.30°C.70°D.110°

查看答案和解析>>

同步练习册答案