精英家教网 > 初中数学 > 题目详情
12.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元时,则每个月少卖5件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每个月的利润恰为3200元?根据以上结论,请你直接写出售价在什么范围内,每个月的利润不低于3200元?

分析 (1)先求得销售量与上涨价格的关系式,然后再根据销售利润=件数×每件的利润列出关系式;
(2)先求得抛物线的对称轴,然后依据二次函数的性质确定出最大利润和此时的售价;
(3)令y=3200,得到关于x的一元二次方程,然后解得x的值即可,然后根据二次函数的性质可求得自变量的范围.

解答 解:(1)由题意得:y=(210-5x)(50+x-40)
=-5x2+160x+2100(0<x≤15且x为整数);
(2)∵x=-$\frac{b}{2a}$=-$\frac{160}{-5×2}$=16,
∴抛物线的对称轴为x=16,
∵a=-5<0,
∴当0<x≤15时,y随x的增大而增大.
∴当x=15时,每个月的获利最大,最大值为3375元.
50+15=65元.
∴当售价定为每件65元,每个月的利润最大,最大的月利润是3375元.
(3)当y=3200时,-5x2+160x+2100=3200,
解得:x1=10,x2=22(舍去).
∴当x=10时,即定价=50+10=60元.
∴当售价定为每件60元时,每个月的利润为3200元.
当售价在不低于60且不高于65元之间时,每个月的利润不低于3200元.

点评 本题考查了二次函数的运用.关键是根据实际问题中涉及的变量,列出等量关系,运用函数的性质解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1千米气温的变化量为-6℃.攀登3千米后,气温下降18℃(填“上升”或“下降”多少).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.△ABC的三条边长分别为a、b、c,则关于x的ax2+2(b-c)x+a=0的根的情况是(  )
A.有两个不等实根B.无实根C.有两个相等实根D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)(-7)×(-5)-90÷(-5);
(2)[$\frac{5}{4}-\frac{1}{3}+$(-2)3×(-$\frac{1}{2}$)2]×(-12).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.党的十八大召开以后,“三公消费”得到有效遏制,在此背景下,一些白酒价格纷纷下调,某种白酒原价200元,经连续两次降价后售价下降了72元,设平均每次降价的百分率为x,则可列方程为(  )
A.200(1-x)2=72B.200(1-x)2=200-72C.200(1-2x)2=72D.200(1-2x)2=200-72

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.探索题:
(x-1)(x+1)=x2-1                
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1      
(x-1)(x4+x3+x2+x+1)=x5-1
(1)根据以上规律,求(x-1)(x6+x5+x4+x3+x2+x+1)
(2)判断22013+22012+…+22+2+1的值的个位数是几?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:4×(-2)-(-8)÷(-1$\frac{1}{3}$)-(-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在反比例函数y=$\frac{-k-4}{x}$图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是k<-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在数轴上与表示-3的点的距离等于5的点所表示的数是-8或2.

查看答案和解析>>

同步练习册答案