分析 (1)先求得销售量与上涨价格的关系式,然后再根据销售利润=件数×每件的利润列出关系式;
(2)先求得抛物线的对称轴,然后依据二次函数的性质确定出最大利润和此时的售价;
(3)令y=3200,得到关于x的一元二次方程,然后解得x的值即可,然后根据二次函数的性质可求得自变量的范围.
解答 解:(1)由题意得:y=(210-5x)(50+x-40)
=-5x2+160x+2100(0<x≤15且x为整数);
(2)∵x=-$\frac{b}{2a}$=-$\frac{160}{-5×2}$=16,
∴抛物线的对称轴为x=16,
∵a=-5<0,
∴当0<x≤15时,y随x的增大而增大.
∴当x=15时,每个月的获利最大,最大值为3375元.
50+15=65元.
∴当售价定为每件65元,每个月的利润最大,最大的月利润是3375元.
(3)当y=3200时,-5x2+160x+2100=3200,
解得:x1=10,x2=22(舍去).
∴当x=10时,即定价=50+10=60元.
∴当售价定为每件60元时,每个月的利润为3200元.
当售价在不低于60且不高于65元之间时,每个月的利润不低于3200元.
点评 本题考查了二次函数的运用.关键是根据实际问题中涉及的变量,列出等量关系,运用函数的性质解决问题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 有两个不等实根 | B. | 无实根 | C. | 有两个相等实根 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 200(1-x)2=72 | B. | 200(1-x)2=200-72 | C. | 200(1-2x)2=72 | D. | 200(1-2x)2=200-72 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com