【题目】挑战自我!
下图是由一些火柴棒搭成的图案:
(1)摆第①个图案用根火柴棒,
摆第②个图案用根火柴棒,
摆第③个图案用根火柴棒.
(2)按照这种方式摆下去,摆第n个图案用多少根火柴棒?
(3)计算一下摆121根火柴棒时,是第几个图案?
【答案】
(1)5;9;13
(2)
解:按(1)的方法,依此类推,
由规律可知5=4×1+1,9=4×2+1,13=4×3+1,
第n个图案中,所用的火柴数为:1+4+4+…+4=1+4×n=4n+1;
故摆第n个图案用的火柴棒是4n+1
(3)
解:根据规律可知4n+1=121得,n=30
【解析】解:(1)由题目得,第①个图案所用的火柴数:1+4=1+4×1=5,
第②个图案所用的火柴数:1+4+4=1+4×2=9,
第③个图案所用的火柴数:1+4+4+4=1+4×3=13,
解决此题的关键是弄清图案中的规律,根据图形中的三个图案知,每个图案都比上一个图案多一个五边形,但是只增加4根火柴,根据此规律来分析,可得答案.
第①个图案所用的火柴数:1+4=1+4×1=5,
第②个图案所用的火柴数:1+4+4=1+4×2=9,
第③个图案所用的火柴数:1+4+4+4=1+4×3=13,
…
依此类推,第n个图案中,所用的火柴数为:1+4+4+…+4=1+4×n=4n+1;
可根据上面得到的规律来解答此题.
科目:初中数学 来源: 题型:
【题目】已知关于x的多项式 ,其中a,b,c,d为互不相等的整数,且 abcd=4 .
(1)求 a+b+c+d 的值.
(2)当 x=1 时,这个多项式的值为64,求e的值.
(3)当 x=1 时,求这个多项式的所有可能的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.
(1)求a、b、c的值,并在数轴上标出点A、B、C.
(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒 个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?
(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为 元.
型号 | A | B |
单个盒子容量(升) | 2 | 3 |
单价(元) | 5 | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区规划在一个长30m、宽20m的长方形土地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm2 , 那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为( )
A.(30﹣x)(20﹣x)=78
B.(30﹣2x)(20﹣2x)=78
C.(30﹣2x)(20﹣x)=6×78
D.(30﹣2x)(20﹣2x)=6×78
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有n个数,第一个记为a1 , 第二个.记为a2;……,第n个记为ax , 若 a1= ,且从第二个数起,每个数都等于“1与它前面那个数的差的倒数”
(1)则a2=;a3 =;a4 = .
(2)根据(1)的计算结果,猜想a2005=;a2006= .
(3)计算: 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com