【题目】如图1,在平面直角坐标系
中,直线
:
与
轴、
轴分别交于点
和点
,抛物线
经过点
,且与直线
的另一个交点为
.
![]()
(1)求
的值和抛物线的解析式;
(2)点
在抛物线上,且点
的横坐标为
(
).
轴交直线
于点
,点
在直线
上,且四边形
为矩形(如图2),若矩形
的周长为
,求
与
的函数关系式以及
的最大值;
(3)
是平面内一点,将
绕点
沿逆时针方向旋转
后,得到
,点
、
、
的对应点分别是点
、
、
.若
的两个顶点恰好落在抛物线上,请直接写出点
的横坐标.
【答案】(1)
,抛物线的解析式为
;(2)
,
有最大值
;(3)点
的横坐标为
或
.
【解析】
(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;
(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.
(1)∵直线
:
经过点
,
∴
,
∴直线
的解析式为
,
∵直线
:
经过点
,
∴
,
∵抛物线
经过点
和点
,
∴
,解得
,
∴抛物线的解析式为
;
(2)令
,则
,解得
,
∴点
的坐标为
,
∴
,
在
中,
,
∴
,
∵
轴,
∴
,
在矩形
中,
,
,
∴
,
∵点
的横坐标为
(
),
∴
,
,
∴
,
∴
,
∵
,且
,
∴当
时,
有最大值
;
(3)∵
绕点
沿逆时针方向旋转
,
∴
轴时,
轴,设点
的横坐标为
,
①如图1,点
、
在抛物线上时,点
的横坐标为
,点
的横坐标为
,
![]()
∴
,
解得
,
②如图2,点
、
在抛的线上时,点
的横坐标为
,点
的纵坐标比点
的纵坐标大
,
![]()
∴
,
解得
,
综上所述,点
的横坐标为
或
.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,F是⊙O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)若DE=3,CE=2,
①求
值;
②若点G 为AE上一点,求OG+
EG最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图(2)所示.
![]()
(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;
(2)求出v2的值;
(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,-3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)点P是抛物线上一动点,当ΔABP的面积为3时,求出点P的坐标;
(3)若点M在直线BH上运动,点N在x轴上运动,点R是坐标平面内一点,当以点C、M、N、R为顶点的四边形为正方形时,请直接写出此时点R的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=96厘米,DE=28厘米,EC=42厘米.
(1)求点D′到BC的距离;
(2)求E、E′两点的距离.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出,当kx+b<
时,x的取值范围;
(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线
经过点
和点
.
![]()
(1)求抛物线的解析式;
(2)
为抛物线上的一个动点,点
关于原点的对称点为
.当点
落在该抛物线上时,求
的值;
(3)![]()
是抛物线上一动点,连接
,以
为边作图示一侧的正方形
,随着点
的运动,正方形的大小与位置也随之改变,当顶点
或
恰好落在
轴上时,求对应的
点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com