精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,F是⊙O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点EEDAF,交AF的延长线于点D

(1)求证:DE是⊙O的切线;

(2)若DE=3,CE=2

①求值;

②若点GAE上一点,求OG+EG最小值.

【答案】(1)证明见解析(2)① ②3

【解析】

1)作辅助线,连接OE.根据切线的判定定理,只需证DEOE即可;

2)①连接BE.根据BCDE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以

②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.

(1)连接OE

OA=OE,∴∠AEO=EAO

∵∠FAE=EAO,∴∠FAE=AEO

OEAF

DE⊥AF,∴OEDE

DE是⊙O的切线

(2)①解:连接BE

∵直径AB ∴∠AEB=90°

∵圆O与BC相切

∴∠ABC=90°

∵∠EAB+EBA=EBA+CBE=90°

∴∠EAB=CBE

∴∠DAE=CBE

∵∠ADE=BEC=90°

∴△ADE∽△BEC

②连接OF,交AD于H

由①,设BC=2x,则AE=3x

∵△BEC∽△ABC

解得:x1=2,(不合题意,舍去)

AE=3x=6,BC=2x=4,AC=AE+CE=8

AB=,∠BAC=30°

∴∠AEO=EAO=EAF=30°,∴∠FOE=2FAE=60°

∴∠FOE=FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形

由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当FGM三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.

OG+EG最小值是3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,DAB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF.

(1)求证:△ADE≌△CDF

(2)如图2连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.求证:四边形EDFG是正方形.

(3)当点E在什么位置时,四边形EDFG的面积最小?直接写出点E的位置及四边形EDFG面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.

(1)求直线CD的解析式;

(2)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:CEQ∽△CDO;

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m﹣2)是一个反比例函数.

(1)求m的值;

(2)它的图象位于哪些象限;

(3)当时,求函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.

1)要使每天获得利润700元,且进货量尽可能减少,请你帮忙确定售价;

2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于 x 的方程 2x2+kx﹣1=0.

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是﹣1,求另一个根及 k 值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2bxcx轴交于点ABAB2,与y轴交于点C,对称轴为直线x2

1)求抛物线的函数表达式;

2)根据图像,直接写出不等式x2bxc0的解集:

3)设D为抛物线上一点,E为对称轴上一点,若以点ABDE为顶点的四边形是菱形,则点D的坐标为:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE分别是⊙O两条半径OAOB的中点,

1)求证:CD=CE

2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求yx的函数关系式.

查看答案和解析>>

同步练习册答案