精英家教网 > 初中数学 > 题目详情

【题目】已知函数y=(m﹣2)是一个反比例函数.

(1)求m的值;

(2)它的图象位于哪些象限;

(3)当时,求函数值y的取值范围.

【答案】(1)m=﹣2;(2)反比例函数的图象位于二、四象限;(3)﹣8≤y≤﹣2.

【解析】

(1)根据反比例函数的定义列出有关m的方程求得m的值即可;

(2)根据求得的反比例函数的解析式确定其图象的位置;

(3)代入x的值求得函数值,即可确定y的取值范围.

(1)∵函数y=(m﹣2)是一个反比例函数,

∴m2﹣5=﹣1,且m﹣2≠0,

解得:m=﹣2;

(2)∵m=﹣2,

∴m﹣2=﹣4<0,

∴反比例函数的图象位于二、四象限;

(3)当x=时,y=﹣4÷=﹣8;

当x=2时,y=﹣4÷2=﹣2,

故y的取值范围是﹣8≤y≤﹣2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).

(1)求y1与y2的函数解析式.

(2)求每天的销售利润W与x的函数解析式.

(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.

(1)求y与x的函数关系式,并直接写出自变量x的取值范围;

(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?

(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)如图,两幢建筑物ABCDAB⊥BDCD⊥BDAB=15cmCD=20cmABCD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点BED在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67cos42°≈0.74tan42°≈0.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=mx+n与反比例函数y= ,其中mn<0,m、n均为常数,它们在同一坐标系中的图象可以是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,∠A=30°,AB=4.若动点D在线段AC上(不与点AC重合),过点DDEACAB边于点E.点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=_______时,⊙C与直线AB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,F是⊙O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点EEDAF,交AF的延长线于点D

(1)求证:DE是⊙O的切线;

(2)若DE=3,CE=2

①求值;

②若点GAE上一点,求OG+EG最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AT是⊙O的切线,ODBC于点D,并且AT=10cmAC=20cmOD=4cm,则半径OC=(  )

A. 8.5cm B. 8cm C. 9.5cm D. 9cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(定义)如图1,A,B为直线l同侧的两点,过点A作直线l的对称点,连接B交直线l于点P,连接AP,则称点P为点A,B关于直线等角点”.

(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(-2,-)两点.

(1)C(4,),D(4,),E(4,)三点中,点  是点A,B关于直线x=4的等角点;

(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,APB=α,求证:

(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

查看答案和解析>>

同步练习册答案