精英家教网 > 初中数学 > 题目详情

【题目】6分)如图,两幢建筑物ABCDAB⊥BDCD⊥BDAB=15cmCD=20cmABCD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点BED在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67cos42°≈0.74tan42°≈0.90

【答案】36.7m

【解析】试题在RT△ABE中,由正切函数可求出BE,在RT△DEC中,由等腰直角三角形的性质求出ED,然后根据BD=BE+ED计算即可.

试题解析:由题意得:AEB=42°DEC=45°ABBDCDBDRTABE中,ABE=90°AB=15AEB=42°tanAEB=BE=≈15÷0.90=,在RTDEC中,CDE=90°DEC=DCE=45°CD=20ED=CD=20BD=BE+ED=+20≈36m).

答:两幢建筑物之间的距离BD约为36.7m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店以每件25元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(400﹣10a)件,但物价局限定每件商品的利润不得超过进价的30%,商店计划要盈利500元,每件商品应定价多少元?需要进货多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6cm,BC=7cm,ABC=30°,点PA点出发,以1cm/s的速度向B点移动,点QB点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(4,0),点P是第一象限内直线y=-x+6上一点.O是坐标原点.

(1)设P(x,y),求△OPA的面积S与x的函数解析式;

(2)当S=10时,求P点的坐标;

(3)在直线y=-x+6上求一点P,使△POA是以OA为底边的等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.

(1)求直线CD的解析式;

(2)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:CEQ∽△CDO;

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点P(m,4)在反比例函数y=﹣的图象上,正比例函数的图象经过点P和点Q(6,n).

(1)求正比例函数的解析式;

(2)P、Q两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m﹣2)是一个反比例函数.

(1)求m的值;

(2)它的图象位于哪些象限;

(3)当时,求函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于 x 的方程 2x2+kx﹣1=0.

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是﹣1,求另一个根及 k 值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一根长为 a 的竹竿 AB 斜靠在墙上,竹竿 AB 的倾斜角为α,当竹竿的顶端 A 下滑到点 A'时,竹竿的另一端 B 向右滑到了点 B',此时倾斜角为β

(1)线段 AA'的长为_____

2)当竹竿 AB 滑到 A'B'位置时,AB 的中点 P 滑到了 P',位置,则点 P 所经过的路线长为___________(两小题均用含 a,α,β的代数式表示)

查看答案和解析>>

同步练习册答案