【题目】(定义)如图1,A,B为直线l同侧的两点,过点A作直线l的对称点,连接B交直线l于点P,连接AP,则称点P为点A,B关于直线的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(-2,-)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
【答案】(1)C;(2)证明见解析;(3)见解析.
【解析】
(1)根据“等角点”的定义找到A关于x=4的对称点A',连接A'B,求得与x=4的交点即可;
(2)根据“等角点”的定义和三角函数的知识,再利用△APG∽△BPH,即可得到;
(3)构造辅助圆⊙O解题,当直线y=ax+b与⊙O相交的另一个交点为Q时,利用圆周角定理以及对称性可证明△ABQ为等边三角形,从而确定Q为定点.再过A,Q分别作y轴的垂线,构造相似三角形(Rt△AMO∽Rt△ONQ),利用相似三角形对应边成比例即可求出Q的坐标,再利用待定系数法求出BQ和AQ的解析式,由此即可确定b的取值范围.
解:(1)点关于直线的对称点为
直线解析式为:
当时,
故答案为:
(2)如图,过点作直线的对称点,连,交直线于点
作于点
点和关于直线对称
,即
,即
,
在中,
(3)如图,当点位于直线的右下方,时,
点在以为弦,所对圆周为,且圆心在下方
若直线与圆相交,设圆与直线的另一个交点为
由对称性可知:,
又
,
是等边三角形
线段为定线段
点为定点
若直线与圆相切,易得、重合
直线过定点
连,过点、分别作轴,轴,垂足分别为、
,
是等边三角形
,
又,
,,点坐标为
设直线解析式为
将、坐标代入得
解得
直线的解析式为:.
设直线的解析式为:,
将、两点代入,
解得.
直线的解析式为:.
若点与点重合,则直线与直线重合,此时,.
若点与点重合,则直线与直线重合,此时,.
又,且点位于右下方,
且或.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
(1)求抛物线的函数表达式;
(2)根据图像,直接写出不等式x2+bx+c>0的解集: .
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一根长为 a 的竹竿 AB 斜靠在墙上,竹竿 AB 的倾斜角为α,当竹竿的顶端 A 下滑到点 A'时,竹竿的另一端 B 向右滑到了点 B',此时倾斜角为β.
(1)线段 AA'的长为_____.
(2)当竹竿 AB 滑到 A'B'位置时,AB 的中点 P 滑到了 P',位置,则点 P 所经过的路线长为___________(两小题均用含 a,α,β的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数的图象分别与线段BC,AC交于点P,Q.若S△PAB-S△PQB=t,则t的值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A(1,1),B(-3,1),C(-3,-1).
(1)若△ABC的外接圆的圆心为P,则点P的坐标为 ,⊙P的半径为 ;
(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A'、B'、C'.
①画出△A'B'C';
②将△A'B'C'沿x轴方向平移,需平移 个单位长度,能使得B'C'所在的直线与⊙P相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D、E分别是⊙O两条半径OA、OB的中点, .
(1)求证:CD=CE.
(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.
(1)点A的坐标为 .
(2)求这条抛物线所对应的函数表达式.
(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.
(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CB是⊙O的弦,CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.
(1)求证:AB是⊙O的切线;(2)若⊙O的半径为2,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com