精英家教网 > 初中数学 > 题目详情
5.(1)计算:(-2017)0+(-2)2+$\sqrt{8}$.
(2)化简:(a+b)2-2b(a-b).

分析 (1)根据零指数幂、二次根式的性质、有理数的乘方分别求出每一部分的值,再求出结果即可;
(2)先算乘法,再合并同类项即可.

解答 解:(1)原式=1+4+2$\sqrt{2}$
=5+2$\sqrt{2}$;

(2)原式=a2+2ab+b2-2ab+2b2
=a2+3b2

点评 本题考查了完全平方公式,零指数幂,二次根式的性质,有理数的乘方,单项式乘以多项式等知识点,能灵活运用性质进行计算和化简是解此题的关键,注意运算顺序.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,Rt△ABC中,∠BCA=90°,AB=$\sqrt{5}$,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰好构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,已知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法.
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的.(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸:
(3)类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.观察、思考、解答:
($\sqrt{2}$-1)2=($\sqrt{2}$)2-2×1×$\sqrt{2}$+12=2-2$\sqrt{2}$+1=3-2$\sqrt{2}$
反之3-2$\sqrt{2}$=2-2$\sqrt{2}$+1=($\sqrt{2}$-1)2
∴3-2$\sqrt{2}$=($\sqrt{2}$-1)2
∴$\sqrt{3-2\sqrt{2}}$=$\sqrt{2}$-1
(1)仿上例,化简:$\sqrt{6-2\sqrt{5}}$;
(2)若$\sqrt{a+2\sqrt{b}}$=$\sqrt{m}$+$\sqrt{n}$,则m、n与a、b的关系是什么?并说明理由;
(3)已知x=$\sqrt{4-\sqrt{12}}$,求($\frac{1}{x-2}$+$\frac{1}{x+2}$)•$\frac{{x}^{2}-4}{2(x-1)}$的值(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在直角坐标系中,△ABC各顶点的坐标为A(-1,1),B(2,3),C(0,3)
(1)求△ABC的面积
(2)画出△ABC绕点A顺时针旋转90°的△AB′C′并求点B在旋转过程中的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,点C是线段AB的中点,过点C作CD⊥AB,且CD=AB=8,点P是线段AB上一动点(不包括端点A,B),点Q是线段CD上的动点,CQ=2PC,过点P作PM⊥AD于M点,点N是点A关于直线PM的对称点,连结NQ,设AP=x.
(1)则AD=4$\sqrt{5}$,AM=$\frac{\sqrt{5}}{5}$x(AM用含x的代数式表示);
(2)当点P在线段AC上时,请说明∠MPQ=90°的理由;
(3)若以NQ为直径作⊙O,在点P的整个运动过程中,
①当⊙O与线段CD相切时,求x的值;
②连结PN交⊙O于I,若NI=1时,请直接写出所有x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在菱形ABCD中,E、F分别为边BC、CD上一点且BE=DF.
(1)求证:△ABE≌△ADF;
(2)连接EF,求证:AC垂直平分EF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.分解因式
(1)a3-2a2+a
(2)a2(x-y)+16(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.若|x|=|y|,则x=yB.若x2=y2,则x=yC.若$\sqrt{x^2}=|y|$,则x=yD.若$\root{3}{x}=\root{3}{y}$,则x=y

查看答案和解析>>

同步练习册答案