精英家教网 > 初中数学 > 题目详情
4.若两个相似三角形的面积比为1:9,则这两个相似三角形的周长比是1:3.

分析 根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可.

解答 解:∵两个相似三角形的面积比为1:9,
∴这两个相似三角形的相似比为1:3,
∴这两个相似三角形的周长比1:3,
故答案为:1:3.

点评 本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,矩形ABCD中,点E是BC边上一点,连接AE,将△ABE向右平移得到△DCF,连接AF.若四边形AEFD为菱形,AF=4$\sqrt{5}$,BE:EC=3:2,则AD长为(  )
A.3B.$2\sqrt{3}$C.5D.$2\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB是⊙O直径,AC、BD是⊙O的切线,切点分别为A、B,EF分别交AC、BD于点E、F,且EO平分∠AEF.
(1)EF与⊙O相切吗?请说明理由;
(2)若AE=4,BF=9,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若将正整数l、2、3、…98写在一起,则可以构成一个新的数字12345…91011…9798.
(1)这个新数是一个几位数?
(2)这个新数各个数位上的数字之和为多少?
(3)在黑板上写上数l、2、3、…98,每次擦去任意的两个数,换上这两个数的和或差,重复这样的操作连续若干次,直到黑板上仅留下一个数为止,这个数是否可能为2016?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若二次函数y=x2+mx的对称轴是x=3,则抛物线y=x2+mx与x轴的交点坐标为(  )
A.(0,0)B.(0,6)C.(0,0)和(0,6)D.(0,0)和(6,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在Rt△ABC中,∠A=90°.
(1)若AB=6,BC=10,求AC的长度;
(2)若AB=4,AC=6,求BC的长度;
(3)若AB=10,BC=26,求△ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.△ABC中的周长为12,c+a=2b,c-a=2,则a:b:c=3:4:5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.用指定的方法解方程:
(1)x2-2x-8=0(配方法)
(2)(x-2)(x-5)=-2(因式分解法)

查看答案和解析>>

同步练习册答案