【题目】某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)试确定y与x之间的函数关系式;
(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?
(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.
【答案】(1) y=-x+120;(2) Q=﹣x2+170x﹣6000,当试销单价定为70元时,该商店可获最大利润,最大利润是1000元;(3)单价为60≤x≤70的整数.
【解析】
(1)利用待定系数法将图中点的坐标求出一次函数解析式即可;
(2)根据利润=(售价﹣成本)×销售量列出函数关系式;
(3)令函数关系式Q≥600,解得x的范围,利用“获利不得高于40%”求得x的最大值,得出销售单价x的范围.
(1)设y=kx+b,根据题意得:
解得:k=﹣1,b=120.
所求一次函数的表达式为y=﹣x+120.
(2)利润Q与销售单价x之间的函数关系式为:Q=(x﹣50)(﹣x+120)=﹣x2+170x﹣6000;Q=﹣x2+170x﹣6000=﹣(x﹣85)2+1225;
∵成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%,∴50≤x≤70,∴当试销单价定为70元时,该商店可获最大利润,最大利润是1000元.
(3)依题意得:﹣x2+170x﹣6000≥600,解得:60≤x≤110.
∵获利不得高于40%,∴最高价格为50(1+40%)=70,故销售单价x的取值范围是60≤x≤70的整数.
科目:初中数学 来源: 题型:
【题目】如图,线段AB为⊙O的直径,点C,E在⊙O上,,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.
(1)求证:CF=BF;
(2)若cos∠ABE,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等边三角形,P是直线AC上一点,AD⊥BP于D,以AD为边作等边△ADE(D,E在直线AC异侧).
(1)如图1,若点P在边AC上,连CD,且∠BDC=150°,则= ;(直接写结果)
(2)如图2,若点P在AC延长线上,DE交BC于F求证:BF=CF;
(3)在图2中,若∠PBC=15°,AB=,请直接写出CP的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )
A. 从D点出发,沿弧DA→弧AM→线段BM→线段BC
B. 从B点出发,沿线段BC→线段CN→弧ND→弧DA
C. 从A点出发,沿弧AM→线段BM→线段BC→线段CN
D. 从C点出发,沿线段CN→弧ND→弧DA→线段AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3,0)和点C(0,3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.
(1)求直线BC及该抛物线的表达式;
(2)设该抛物线的顶点为D,求△DBC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是边AD上一点,过点E作EF⊥BC,垂足为点F,将△BEF绕着点E逆时针旋转,使点B落在边BC上的点N处,点F落在边DC上的点M处,若点M恰好是边CD的中点,那么 的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄河,既是一条源远流长、波澜壮阔的自然河,又是一条孕育中华民族灿烂文明的母亲河.数学课外实践活动中,小林和同学们在黄河南岸小路上的A,B两点处,用测角仪分别对北岸的观景亭D进行测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=200米,求观景亭D到小路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com