精英家教网 > 初中数学 > 题目详情

在△ABC中,∠BAC:∠ABC:∠ACB=4:2:1,AD是∠BAC的平分线,有如下三个结论:①BC:AC:AB=4:2:1;②AC=AD+AB;③△DAC∽△ABC.其中正确的结论是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ①③
  4. D.
    ①②③
B
分析:①中可根据正弦定理进行验证,②中由全等可得线段相等,③中对应角相等,则两三角形相似.
解答:解:如图所示①中,∠BAC:∠ABC:∠ACB=4:2:1,
但sin∠BAC:sin∠ABC:sin∠ACB≠4:2:1,

所以①不正确;
②中由题中比例及AD平分∠BAC可知,∠BAD=∠B,
即AD=BD,
∵DF=DG,
∴DE=AD,△ABD≌△AED,
∴AE=AB
∴∠DEA=∠DAC,
∴EC=ED=AD,
∴AC=AE+EC=AB+AD,
所以②正确;
③中∠C为公共角,∠DAC=∠ABC,所以△DAC∽△ABC,故正确.
故选B.
点评:熟练掌握三角形的性质,角平分线的定义及三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动精英家教网;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.
(1)当x为何值时,PQ∥BC;
(2)当
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ;
(2)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以每秒4cm,的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ
(2)当x为何值时,PQ∥BC
(3)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案