精英家教网 > 初中数学 > 题目详情
如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.绕点O顺时针旋转△MON,其中旋转的角度为α(0<α<360°).
(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为
 
度;
(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角△MON从图1旋转到图3的位置的过程中,若直角△MON绕点O按每秒25°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.
考点:几何变换综合题
专题:
分析:(1)根据∠MON的度数,可得ON旋转的度数,可得答案;
(2)根据∠AOC:∠BOC=1:3,可得∠AOC的度数,根据角的和差,可得∠AON与∠CON的关系,再根据∠AON与∠AOM的关系,可得答案;
(3)分类讨论,ON在∠AOC的平分线上,ON的反向延长线平分∠AOC,可得相应的旋转角,根据旋转的速度,可得旋转的时间.
解答:解:(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为 270度,
故答案为:270;
(2)解:∠AOM-∠NOC=45°,理由如下:
∵∠AOC:∠BOC=1:3,∠AOC+∠BOC=180°,
∴∠AOC=45°,∠BOC=135°,
∴∠AON+∠NOC=45°,∠AON=45°-∠NOC
∵∠MON=90°,
∴∠AON+∠AOM=90°.
∴45°-∠NOC+∠AOM=90°,
即∠AOM-∠NOC=45°.
(3)解:①当ON平分∠AOC时,由(2)可知:∠AOC=45°,
∴∠AON+∠NOC=45°.
∵ON平分∠AOC,
∴∠AON=∠NOC=22.5°,
∵∠MON=90°,
∴旋转角度为:90°+22.5°=112.5°,
t=
112.5
25
=4.5s

②当ON的反向延长线平分∠AOC时,旋转112.5°的基础上,再旋转180°,
∴旋转角度为:112.5°+180°=292.5°.
t=
292.5
25
=11.7s

综上所述:t=4.5s或t=11.7s.
点评:本题考查了几何变换综合题,利用了旋转角,角的和差关系,分类讨论是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,则EF长(  )
A、9cmB、10cm
C、11cmD、12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

某水果生产基地喜获丰收,收获水果200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
销售方式批发零售储藏后销售
售价(元/吨)300045005500
成本(元/吨)70010001200
若经过一段时间,水按计划全部售出获得的总利润为y(元),水果零售x(吨),且批发量是的零售量3倍
(1)求y与x之间的函数关系式;
(2)由于天气原因,经冷库储藏售出的水果销售比零售量大,为了获得更多利润,要求销售成本不超过189000元,求该生产基地按计划全部售完水果获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,身高1.6米的小明从距路灯的底部(点O)20米的点A沿AO方向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M处.
(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置.
(2)若路灯(点P)距地面8米,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

某学校计划在总费用不超过2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要一名教师.现有甲、乙两种大客车,它们的载客量和租金如下表:
甲种客车乙种客车
载客量(人/辆)4530
租金(元/辆)400280
(1)若设租甲种客车x(辆)、学校租车所需的总费用y(元),根据题意写出y与x之间的函数关系式
 

(2)根据题意,求出(1)中函数的自变量x的取值;
(3)租车方案是怎样时,租车所需的总费用最少?最少的租车费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:3(x2-2xy)-2[
1
4
xy-1+
3
2
(-xy+x2)],其中x=-4,y=
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC.
(1)求证:四边形ABEC是平行四边形.
(2)若AD=CD=6,∠ADC=120°,求四边形ABEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读理解
如图,在△ABC中,AD平分∠BAC,求证:
AB
BD
=
AC
CD

小明在证明此题时,想通过证明三角形相似来解决,但发现图中无相似三角形,于是过点B作BE∥AC交AD的延长线于点E,构造△ACD∽△EBD,则
AB
BD
=
AC
CD

于是小明得出结论:在△ABC中,AD平分∠BAC,则
AB
BD
=
AC
CD

请完成小明的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a、b为有理数,m、n分别表示5-
7
的整数部分和小数部分,且amn+bn2=10,则a-b=
 

查看答案和解析>>

同步练习册答案