精英家教网 > 初中数学 > 题目详情

【题目】已知a+3b=2,则a2-9b2+12b的值是(  )

A. 2 B. 3 C. 4 D. 6

【答案】C

【解析】

根据等式的性质,可化简条件成所求的代数式的形式,根据条件,可得答案.

a+3b=2,

a2-9b2+12b=(a+3b)(a-3b)+12b=2(a-3b)+12b=2a-6b+12b=2a+6b=2(a+3b)=2×2=4,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点EF分别是BCCD上的动点(不与点BCD重合),且∠EAF=45°,AEAF与对角线BD分别相交于点GH,连接EHEF,则下列结论:

ABH∽△GAH; ② ABG∽△HEG; ③ AE=AH; ④ EHAF; ⑤ EF=BE+DF

其中正确的有( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1:已知△ABC中,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法.但要保留作图痕迹).
(2)如图2,已知△ABC中,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE、CD,判断BE与CD有什么数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x3+4x分解因式的结果是(  )

A. x(x2+4) B. x(x+2)(x-2)

C. x(x+2)2 D. x(x-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.

(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为

(2)求点到直线的距离;

(3)如果点到直线的距离为3,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数y= x与一次函数y=﹣x+7的图象交于点A.

(1)求点A的坐标;
(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y= x和y=﹣x+7的图象于点B,C,连接OC.若BC= OA,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(ab+1)(ab-1)=63,则(ab)2________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.

(1)求足球和篮球的单价各是多少元?

(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品公司产销一种食品,已知每月的生产成本y1与产量x之间是一次函数关系,函数y1与自变量z(kg)的部分对应值如下表:

x(单位:kg)

10

20

30

y1(单位:/元)

3030

3060

3090


(1)求y1与x之间的函数关系式;
(2)经过试销发现,这种食品每月的销售收入y2(元)与销量x(kg)之间满足如图所示的函数关系

①y2与x之间的函数关系式为
(3)②假设该公司每月生产的该种食品均能全部售出,那么该公司每月至少要生产该种食品多少kg,才不会亏损?

查看答案和解析>>

同步练习册答案