精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=﹣(x+3)2+2图象的开口方向、对称轴和顶点坐标分别为(
A.向下,x=3,(3,2)
B.向下,x=﹣3,(3,2)
C.向上,x=﹣3,(3,2)
D.向下,x=﹣3,(﹣3,2)

【答案】D
【解析】解:由二次函数y=﹣(x+3)2+2,可知a=﹣1<0,故抛物线开口向下;
顶点坐标为(﹣3,2),对称轴为x=﹣3.
故选D.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,图2中,∠1和∠2,∠3和∠4各是哪两条直线被哪一条直线所截形成的?它们各是什么位置关系的角?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般地,n个相同的因数a相乘aa…a,记为an , 如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为lognb(即lognb).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算下列各对数的值:log24=;log216=;log264=
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
(4)根据幂的运算法则:anam=an+m以及对数的含义说明上述结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a>b,则下列不等式中正确的是(
A.﹣3a>﹣3b
B.﹣ >﹣
C.3﹣a>3﹣b
D.a﹣3>b﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有(
A.4个
B.6个
C.8个
D.10个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+c与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P

(1)若A(﹣2,0),C(0,﹣4)

①求抛物线的解析式;

②在①的情况下,若点P在第四象限运动,点D(0,﹣2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围.

(2)若点P在第一象限运动,且a<0,连接AP、BP分别交y轴于点E、F,则问 是否与a,c有关?若有关,用a,c表示该比值;若无关,求出该比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了考察某区3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣2,0),等边△AOC经过平移或轴对称或旋转都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度.
(2)连接AD,交OC于点E,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.
①求证:BE=CF;
②若AF=5,BC=6,求△ABC的周长.

查看答案和解析>>

同步练习册答案