【题目】一次函数y=kx+b的图象经过点A(0,9),并与直线y=x相交于点B,与x轴相交于点C,其中点B的横坐标为3.
(1)求B点的坐标和k,b的值;
(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于?请求出点Q的坐标;
(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.
【答案】(1)点B(3,5),k=﹣,b=9;(2)点Q(0,9)或(6,1);(3)存在,点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,)
【解析】
(1)相交于点,则点,将点、的坐标代入一次函数表达式,即可求解;
(2)的面积,即可求解;
(3)分、、三种情况,分别求解即可.
解:(1)相交于点,则点,
将点、的坐标代入一次函数表达式并解得:,;
(2)设点,
则的面积,
解得:或6,
故点Q(0,9)或(6,1);
(3)设点,而点、的坐标分别为:、,
则,,,
当时,,解得:或4;
当时,同理可得:(舍去)或;
当时,同理可得:;
综上点的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,).
科目:初中数学 来源: 题型:
【题目】如图,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分线分别交 AC,AD 于E,F,点M 为 EF 的中点,AM 的延长线交 BC 于N,连接 DM,NF,EN.下列结论:①△AFE为等腰三角形;②△BDF≌△ADN;③NF所在的直线垂直平分AB;④DM平分∠BMN;⑤AE=EN=NC;⑥.其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:
(1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;
(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;
(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC,∠B=90°,将△ABC沿BC方向平移,得到△A'CC',以C为位似中心,作△DEC与△ABC位似,位似比为1∶2,若F为CC'的中点,连接DF,A'F,则的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD⊥AB,且CD2=ADDB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.则下列结论正确的是( )
A. ①②④ B. ②③④ C. ①②③④ D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,
点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE
的面积为3,则k的值为 ▲ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形是正方形.
(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长方形中,,
(1)如图1,将该长方形沿对角线折叠,求△BDE的周长?写出解题过程;
(2)如图2,F是线段AB上的一个动点,在(1)的条件下,再将△AEF沿EF折叠,当A的对应点恰好落在BE上时,线段AF的值是 (直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中①等腰三角形底边的中点到两腰的距离相等
②如果两个三角形全等,则它们必是关于直线成轴对称的图形
③如果两个三角形关于某直线成轴对称,那么它们是全等三角形
④等腰三角形是关于底边中线成轴对称的图形
⑤一条线段是关于经过该线段中点的直线成轴对称的图形
正确命题的个数是( )
A.个B.个C.个D.个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com