分析 由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105°,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.
解答 解:∵CD=BC,
∴∠CBD=∠CDB,
∵∠ACB=∠CBD+∠CDB,
∴∠ACB=2∠CBD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC=2∠CBD,
∵∠ABD=∠ABC+∠CBD=3∠CBD=105°,
∴∠CBD=35°,
∴∠ABC=2∠CBD=70°,
∴∠A=180°-2∠ABC=40°,
故答案为:40.
点评 本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com