【题目】下列说法:①垂直于同一直线的两条直线互相平行;②两个无理数的和是无理数;③点一定不在第四象限;④平方根等于本身的数是或;⑤若点的坐标满足,则点落在原点上;⑥如果两个角的角平分线互为反向延长线,则这两个角为对顶角.正确个数是( )
A.B.C.D.
【答案】C
【解析】
①根据两直线平行的判定定理“同一平面内,垂直于同一直线的两直线平行”来判断.②根据实数运算法则判断即可. ③根据每个象限里点的坐标的特征判断即可. ④根据平方根的意义判断. ⑤根据坐标轴上的点的特征来判断. ⑥根据角平分线及射线的性质判断即可.
①同一平面内,垂直于同一直线的两条直线互相平行.必须强调在同一平面内,故错误.
②如,两个无理数的和也可以是有理数,故错误.
③可假设点在第四象限,则有,该不等式无解,故点一定不在第四象限,故正确.
④平方根等于本身的数是0,1的平方根为,故错误.
⑤若点的坐标满足,则有或,点在坐标轴上,故错误.
⑥该命题不一定成立,BF平分∠ABC,BG平分∠DBE,BF与BG互为反向延长线,∠ABC与∠DBE不是对顶角,如图
,
故错误.
故选: C.
科目:初中数学 来源: 题型:
【题目】目前使用节能灯照明已经基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:
进价(元/只) | 售价(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)若商场某一天销售节能灯中,销售甲型的只数是乙型的只数的3倍,销售所收的款是9000元,问这天销售节能灯为多少只?
(2)若商场购进节能灯的货款为38000元时,商场销售完节能灯所得利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节期间,小明一家乘坐飞机前往某市旅游,计划第二天租出租车自驾游.
公司 | 租车收费方式 |
甲 | 每日固定租金80元,另外每小时收费15 元. |
乙 | 无固定租金,直接以租车时间计费,每小时租费30元 |
(1)设租车时间为x小时, 租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出与x之间的关系式:
(2)请你帮助小明计算并选择哪个公司租车合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】苏科版九年级下册数学课本91页有这样一道习题:
(1)复习时,小明与小亮、数学老师交流了自己的两个见解,并得到了老师的认可:
①可以假定正方形的边长AB=4a,则AE=DE=2a,DF=a,利用“两边分别成比例且夹角相等的两个三角形相似”可以证明△ABE∽△DEF;请结合提示写出证明过程.
②图中的相似三角形共三对,而且可以借助于△ABE与△DEF中的比例线段来证明△EBF与它们相似.证明过程如下:
(2)交流之后,小亮尝试对问题进行了变化,在老师的帮助下,提出了新的问题,请你解答:
已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC.
(AB>AE)
①求证:△AEF∽△ECF;
②设BC=2,AB=a,是否存在a值,使得△AEF与△BFC相似.若存在,请求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:
(1)本次被调查的学生有多少人.
(2)将两幅统计图补充完整.
(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.
(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线,的平分线交于点.
(1)求证:;
(2)如图2,过点作于点,交于点,探究与之间的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,的平分线交延长线于点,为延长线上一点,,将延直线翻折,所得直线交于,交于,若,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.
(1)图2中,弓臂两端B1,C1的距离为_____cm.
(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com