精英家教网 > 初中数学 > 题目详情
10.已知x1,x2,…,x2012都是不等于0的有理数,请你探究以下问题:
(1)若y1=$\frac{{|{x_1}|}}{x_1}$,则y1=±1.
(2)若y2=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$,则y2=±2或0;
(3)若y3=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{x2}$+$\frac{|{x}_{3}|}{{x}_{3}}$,则y3=±3,±1.
(4)由以上探究可知,在y2012这些不同的值中,最大值和最小值的差等于4024.
(5)y2012=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$+…+$\frac{|{x}_{2012}|}{{x}_{2012}}$,则y2012共有2013个不同的值.

分析 (1)根据绝对值的意义,分类讨论,可得答案;
(2)根据绝对值的意义,分类讨论,可得答案;
(3)根据绝对值的意义,分类讨论,可得答案;
(4)先求出在y2012这些不同的值中的最大值和最小值,再相减即可求解;
(5)根据观察,归纳,发现规律,可得答案.

解答 解:(1)x1<0时,y1=$\frac{{|{x_1}|}}{x_1}$=-1,x1>0时,y1=$\frac{{|{x_1}|}}{x_1}$=-1,则y1=±1;
(2)若x1>0,x2>0时,y2=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$=2,
x1>0,x2<0时,y2=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$=0,
x1<0,x2<0时,y2=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$=-2,
综上所述,y2=±2或0;
(3)x1>0,x2>0,x3>0,y3=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{x2}$+$\frac{|{x}_{3}|}{{x}_{3}}$=3,
x1>0,x2>0,x3<0,y3=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{x2}$+$\frac{|{x}_{3}|}{{x}_{3}}$=1
x1>0,x2<0,x3<0,y3=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{x2}$+$\frac{|{x}_{3}|}{{x}_{3}}$=-1,
x1<0,x2<0,x3<0,y3=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{x2}$+$\frac{|{x}_{3}|}{{x}_{3}}$=-3
综上所述,y3=±1,±3;
(4)由以上探究可知,在y2012这些不同的值中,最大的值和最小的值的差等于2012-(-2012)=4024;
(5)由以上探究可知,y2012=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$+…+$\frac{|{x}_{2012}|}{{x}_{2012}}$,则y2012共有2013个不同的值.
故答案为:±1;±2或0;±3或±1,4024;2013.

点评 本题考查了绝对值,利用了分类讨论的思想,发现规律是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.写出一个比-4$\frac{1}{2}$大的负整数:-4,-3,-2,-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.写出所有大于-3$\frac{1}{2}$而小于1$\frac{3}{4}$的整数-3,-2,-1,0,1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,将四根长度相同的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图①测得AC=5.当∠B=30°时,如图②,△ABC的面积为(  )
A.$\frac{25}{8}$B.$\frac{25}{16}$C.$\frac{25}{4}$D.以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知|a|=3,|b|=4,且a<b,则$\frac{a-b}{a+b}$的值为-7或-$\frac{1}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,AD‖BC,∠B=90°,AB=4cm,AD=8cm,BC=14cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个端点也随之停止运动.
(1)t为何值时,PQ‖CD.
(2)t为何值时,PQ=CD.
(3)若P点的速度是$\frac{3}{2}$cm/s,其余条件不变,问Q点的速度是多少时,PQ垂直平分对角线BD?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2016A2017=2×31008

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若x<y,且(a+5)x>(a+5)y,则a的取值范围(  )
A.a>-5B.a≥-5C.a<-5D.a<5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简再求值:$\frac{{x}^{2}}{x-1}$+$\frac{1}{1-x}$,其中x=$\sqrt{5}$-1.

查看答案和解析>>

同步练习册答案