精英家教网 > 初中数学 > 题目详情
20.写出一个比-4$\frac{1}{2}$大的负整数:-4,-3,-2,-1.

分析 由-5<-4$\frac{1}{2}$<-4,根据负整数的定义即可求得答案.

解答 解:∵-5<-4$\frac{1}{2}$<-4.
∴比-4$\frac{1}{2}$大的负整数有-4,-3,-2,-1.
故答案为:-4,-3,-2,-1.

点评 本题考查了有理数大小比较的方法.注意两个负数中绝对值大的反而小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,抛物线y=-$\frac{\sqrt{3}}{3}$x2+bx+c与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D,B(-3,0),A(0,$\sqrt{3}$)
((1)求抛物线解析式及D点坐标;
(2)如图1,P为线段OB上(不与O、B重舍)一动点,过点P作y轴的平行线交线段AB于点M,交抛物线于点N,点N作NK⊥BA交BA于点K,当△MNK与△MPB的面积相等时,在X轴上找一动点Q,使得$\frac{1}{2}$CQ+QN最小时,求点Q的坐标及$\frac{1}{2}$CQ+QN最小值;
(3)如图2,在(2)的条件下,将△ODN沿射线DN平移,平移后的对应三角形为△O′D′N′,将△AOC绕点O逆时针旋转到A1OC1的位置,且点C1恰好落在AC上,△A1D′N′是否能为等腰三角形,若能求出N′的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知双曲线y=$\frac{k}{x}$(k≠0)上有一点P(m,n),m,n是关于t的一元二次方程t2-3t+k=0的两根,且P点到原点的距离为$\sqrt{13}$,则双曲线的表达式为(  )
A.y=$\frac{2}{x}$B.y=-$\frac{2}{x}$C.y=$\frac{4}{x}$D.y=-$\frac{4}{x}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,已知∠B=∠E,AB=DE,要推得△ABC≌△EDF,若以“AAS”为依据,缺条件∠ACB=∠DFE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.一个锐角的余角是这个锐角的补角的$\frac{1}{4}$.求这个角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若点A表示数-3,将点A向左移动1个单位长度,再向右移动5个单位长度,那么终点表示的数是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图是一副“苹果图”,第一行有1个苹果,第二行有2个苹果,第三行有4个苹果,第四行有8个苹果…,猜猜第十行有29个苹果,第2017行有22016个苹果.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在1,π,-3,$\sqrt{8}$,5.5这5个数中随机取出一个数,则取出的这个数大于2的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知x1,x2,…,x2012都是不等于0的有理数,请你探究以下问题:
(1)若y1=$\frac{{|{x_1}|}}{x_1}$,则y1=±1.
(2)若y2=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$,则y2=±2或0;
(3)若y3=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{x2}$+$\frac{|{x}_{3}|}{{x}_{3}}$,则y3=±3,±1.
(4)由以上探究可知,在y2012这些不同的值中,最大值和最小值的差等于4024.
(5)y2012=$\frac{|{x}_{1}|}{{x}_{1}}$+$\frac{|{x}_{2}|}{{x}_{2}}$+…+$\frac{|{x}_{2012}|}{{x}_{2012}}$,则y2012共有2013个不同的值.

查看答案和解析>>

同步练习册答案