【题目】已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.
(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;
(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?
【答案】(1)△PDC为等边三角形,理由见解析;
(2)△PDC仍为等边三角形,理由见解析.
【解析】试题分析:(1)观察图形可得△PDC为等边三角形,先根据条件证明△APC≌△BDC得出PC=DC,然后根据条件证明∠CPD=60°即可得出结论;(2)利用(1)中方法即可得出结论.
试题解析:(1)如图①,△PDC为等边三角形.(2分)
理由如下:
∵△ABC为等边三角形
∴AC=BC
∵在⊙O中,∠PAC=∠PBC
又∵AP=BD
∴△APC≌△BDC
∴PC=DC
∵AP过圆心O,AB=AC,∠BAC=60°
∴∠BAP=∠PAC=∠BAC=30°
∴∠PBC=∠PAC=30°,∠BCP=∠BAP=30°
∴∠CPD=∠PBC+∠BCP=30°+30°=60°
∴△PDC为等边三角形;(6分)
(2)如图②,△PDC仍为等边三角形.(8分)
理由如下:
∵△ABC为等边三角形
∴AC=BC
∵在⊙O中,∠PAC=∠PBC
又∵AP=BD
∴△APC≌△BDC
∴PC=DC
∵∠BAP=∠BCP,∠PBC=∠PAC
∴∠CPD=∠PBC+∠BCP=∠PAC+∠BAP=60°
∴△PDC为等边三角形.
科目:初中数学 来源: 题型:
【题目】在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:
小华列出表格如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
(1)根据树形图分析,小明的游戏规则是,随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;根据表格分析,小华的游戏规则是,随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片。
(2)根据小华的游戏规则,表格中①表示的有序数对为 。
(3)规定两次抽到的数字之和为奇数的获胜,谁获胜的可能性大?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A. 有两个不相等实数根 B. 有两个相等实数根
C. 有且只有一个实数根 D. 没有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为( )
A.3.7×102
B.3.7×103
C.37×102
D.0.37×104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某出租车的收费标准是:起步价7元(只要行驶距离不超过3km,都需付款7元),超过3km,往后毎增加1千米增收2.4元(不足1km按1km计算).现从A地到B地共支出车费19元.那么,他行驶的最大路程是( )
A.9km
B.8km
C.7km
D.5km
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是( )
A.2
B.2或2.25
C.2.5
D.2或2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义新运算:A*B=A+B+AB,则下列结论正确的是( )
①2*1=5 ②2*(-3)= -7 ③(-5 )*8=37 ④(-7)*(-9)=47
A. ①②B. ①②③C. ③④D. ①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com