【题目】如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.
(1)求点C的坐标和反比例函数的解析式;
(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?
【答案】(1)y=(2)恰好落在双曲线上
【解析】(1)过点C作CE⊥AB于点E,
∵四边形ABCD是等腰梯形,
∴AD=BC,DO=CE,
∴△AOD≌△BEC,∴AO=BE=2,
∵BO=6,∴DC=OE=4,
∴C(4,3);
设反比例函数的解析式y=(k≠0),
根据题意得:3=,
解得k=12;
∴反比例函数的解析式y=;
(2)将等腰梯形ABCD向上平移2个单位后得到梯形A′B′C′D′得点B′(6,2),
故当x=6时,y==2,即点B′恰好落在双曲线上.
(1)C点的纵坐标与D的纵坐标相同,过点C作CE⊥AB于点E,则△AOD≌△BEC,即可求得BE的长度,则OE的长度即可求得,即可求得C的横坐标,然后利用待定系数法即可求得反比例函数的解析式;
(2)将等腰梯形ABCD向上平移2个单位后,点B向上平移2个单位长度得到的点的坐标即可得到,代入函数解析式判断即可.
科目:初中数学 来源: 题型:
【题目】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.
(1)求反比例函数y=的表达式;
(2)求点B的坐标;
(3)求△OAP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1
(1)若k=2,则AO的长为 ,△BOD的面积为 ;
(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例y=(x>0)的图象上的一个动点,连接OA,OB⊥OA,且OB=2OA,那么经过点B的反比例函数图象的表达式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出下列结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F(AB>AE).问:△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB、AC上.
(1)求证:△AEF∽△ABC;
(2)求这个正方形零件的边长;
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com