【题目】如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为( )
A. 9 B. C. 27 D.
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D. 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面内有一等腰Rt△ABC,∠ACB=90°,点A在直线l上.过点C作CE⊥1于点E,过点B作BF⊥l于点F,测量得CE=3,BF=2,则AF的长为( )
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成相应的任务:求根分解法是多项式因式分解的一种方法,是用求多项式对应的方程的根分离出多项式的一次因式.
设f(x)是一元多项式,若方程f(x)=0有一个根为x=a,则多项式必有一个一次因式x﹣a,于是f(x)=(x﹣a)g(x).
例如,设多项式7x2﹣x﹣6为f(x),则有f(x)=7x2﹣x﹣6,令7x2﹣x﹣6=0,容易看出,此方程有一根为x=1,则f(x)必有一个一次因式x﹣1,那么得到7x2﹣x﹣6=(x﹣1)(mx+n)(m、n为常数)而(x﹣1)(mx+n)=mx2+(n﹣m)x﹣n,所以7x2﹣x﹣6=mx2+(n﹣m)x﹣n,由系数对应相等可得m=7,n=6,所以7x2﹣x﹣6=(x﹣1)(7x+6).
任务:(1)方程x3﹣3x2+4=0的一根为 .
(2)请你根据上面的材料因式分解多项式:x3﹣3x2+4= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】沐阳特产专卖店销售某种物产,其进价为每千克元,若按每千克元出售,则平均每天可售出千克,后来经过市场调查发现,单价每降低元,平均每天的销售量增加千克,若专卖店销售这种特产平均每天获利元,且销量尽可能大,则每千克特产应定价为多少元?
解:方法:设每千克特产应降价元,由题意,得方程为: ________;
方法:设每千克特产降价后定价为元,由题意,得方程为:________.
请你选择其中一种方法完成解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4000 | 2500 |
售价(元/部) | 4300 | 3000 |
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.
(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com