精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).

(1)写出抛物线的对称轴与x轴的交点坐标;

(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;

(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.

【答案】(1)交点坐标(1,0)

(2)y1>y2

(3)y=2x﹣4

【解析】

试题(1)根据图示可以直接写出抛物线的对称轴与x轴的交点坐标

(2)根据抛物线的对称轴与x轴的交点坐标可以求得该抛物线的对称轴是x=1,然后根据函数图象的增减性进行解题

(3)根据已知条件可以求得点C的坐标是(3,2),所以根据点A、C的坐标来求直线AC的函数关系式

解:(1)根据图示,由抛物线的对称性可知,抛物线的对称轴与x轴的交点坐标(1,0)

(2)抛物线的对称轴是直线x=1.

根据图示知,当x<1时,y随x的增大而减小,

当x1<x2<1时,y1>y2

(3)对称轴是x=1,点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,

点C的坐标是(3,2)

设直线AC的关系式为y=kx+b(k≠0)

,解得

直线AC的函数关系式是:y=2x﹣4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,BD=BC

1)如图,若菱形ABCD的面积为6.求点BDC的最短距离.

2)如图2,点FBC边上,且DECF,连接DFBE于点M,连接EB并延长至点N,使得BNDM,求证:ANDM+BM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABD中,∠A90°,将斜边BD绕点B顺时针方向旋转至BC,使BCAD,过点CCEBD于点E

(1)求证:ABD≌△ECB

(2)若∠ABD30°BE=3,求弧CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形OAB处,则顶点O所经过的路线总长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组请结合题意填空,完成本题的解答、

I)解不等式①,得    

II)解不等式②,得     

III)把不等式①和②的解集在数轴上表示出来:

IV)原不等式组的解集为    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB为反比例函数y=在第一象限上的两点,ACy轴于点CBDx轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k2,则k的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2mx+m2+1(m为常数),当自变量x的值满足﹣3≤x≤﹣1时,与其对应的函数值y的最小值为5,则m的值为(  )

A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,以AB为直径的圆与BC边交于点D,过点DDFAC,垂足为F,过点FFGAB,垂足为G,连结GD

1)求证:DF是⊙O的切线;

2)若AB12,求FG的长;

3)在(2)问条件下,求点DFG的距离.

查看答案和解析>>

同步练习册答案