精英家教网 > 初中数学 > 题目详情

【题目】如图,点AB为反比例函数y=在第一象限上的两点,ACy轴于点CBDx轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k2,则k的值为(  )

A. B. C. D.

【答案】B

【解析】

根据反比例函数图象上点的坐标特征,设Bt),则AC2CE2t,可表示出A2t),由点B和点A的纵坐标可知BD2OC,然后根据三角形面积公式得到关于k的方程,解此方程即可.

解:设Bt),

ACy轴于点CBDx轴于点DB点的横坐标是A点横坐标的一半,

AC2CE2t

A2t),

BD2OC2BE

OCMBEM

∴△OCM≌△BEM

CMEM=

同理可证:ODN≌△AEN

ENDN=

∴阴影部分的面积=

解得:k=

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(9)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.

请根据图中提供的信息,解答下面的问题:

(1)参加调查的学生共有 人,在扇形图中,表示其他球类的扇形的圆心角为 度;

(2)将条形图补充完整;

(3)若该校有2000名学生,则估计喜欢篮球的学生共有 人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:

(1)本次抽查的样本容量是

(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;

(3)将条形统计图补充完整;

(4)如果该地区初中学生共有60000名,那么在课堂中能独立思考的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).

(1)写出抛物线的对称轴与x轴的交点坐标;

(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;

(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C

I)若∠ADE=25°,求∠C的度数

II)若AB=AC,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD2ABEAD的中点,一块三角板的直角顶点与点E重合,两直角边与ABBC分别交于点MN,求证:BMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.

1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;

2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?

3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点QQO⊥BD,垂足为O,连接OA、OP.

(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?

(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;

(3)在平移变换过程中,设y=SOPB,BP=x(0≤x≤2),求yx之间的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P的坐标为(),点Q的坐标为(),且,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点PQ相关矩形.下图为点PQ 相关矩形的示意图.

1)已知点A的坐标为(10).

若点B的坐标为(31)求点AB相关矩形的面积;

C在直线x=3上,若点AC相关矩形为正方形,求直线AC的表达式;

2O的半径为,点M的坐标为(m3).若在O上存在一点N,使得点MN相关矩形为正方形,求m的取值范围.

查看答案和解析>>

同步练习册答案