精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作 EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、 EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若,则.其中结论正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】D

【解析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;
②由SAS证明EHF≌△DHC即可;
③根据EHF≌△DHC,得到∠HEF=HDC,从而∠AEH+ADH=AEF+HEF+ADF-HDC=180°;
④若=,则AE=2BE,可以证明EGH≌△DFH,则∠EHG=DHFEH=DH,则∠DHE=90°,EHD为等腰直角三角形,过H点作HM垂直于CDM点,设HM=x,则DM=5x,DH=,CD=6x,则SDHC=×HM×CD=3x2,SEDH=×DH2=13x2

①∵四边形ABCD为正方形,EFAD,

EF=AD=CD,ACD=45°,GFC=90°,

CFG为等腰直角三角形,

GF=FC,

EG=EFGF,DF=CDFC,

EG=DF,故①正确;

②∵CFG为等腰直角三角形,HCG的中点,

FH=CH,GFH=GFC=45°=HCD,

EHFDHC中,

EF=CD;EFH=DCH;FH=CH,

EHFDHC(SAS),故②正确;

③∵EHFDHC(已证),

∴∠HEF=HDC,

∴∠AEH+ADH=AEF+HEF+ADFHDC=AEF+ADF=180°,故③正确;

④∵=

AE=2BE,

CFG为等腰直角三角形,HCG的中点,

FH=GH,FHG=90°,

∵∠EGH=FHG+HFG=90°+HFG=HFD,

EGHDFH中,

EG=DF;EGH=HFD;GH=FH,

EGHDFH(SAS),

∴∠EHG=DHF,EH=DH,DHE=EHG+DHG=DHF+DHG=FHG=90°,

EHD为等腰直角三角形,

如图,过H点作HMCDM,

HM=x,DM=5x,DH=,CD=6x,

SDHC=×HM×CD=3x2,SEDH=×DH2=13x2

3SEDH=13SDHC,故④正确;

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?

(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,垂足为分别是边上一点.

(1)求证:

(2),求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:

每人加工件数

540

450

300

240

210

120

人数

1

1

2

6

3

2

(1)写出这15人该月加工零件数的平均数、中位数和众数。

(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).

(1)点B和点C的坐标分别是
(2)将△ABC平移后使点C与点D重合,点A、B与点E、F重合,画出△DEF.
并直接写出E、F的坐标.
(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

(1)﹣24+(﹣16)﹣(﹣18)﹣13

(2)

(3)﹣22÷(﹣4)3+|0.8﹣1|×

(4)99×49

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC中,OA=3,AB=4,双曲线yk>0与矩形两边ABBC分 别交于点DE,且BD=2AD

(1)求此双曲线的函数表达式及点E的坐标;

(2)若矩形OABC的对角线OB与双曲线相交于点P,连结PC,求△POC的面积﹒

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,以AC为直径的⊙O分别交AB,BC于点D,E,点F在AB的延长线上,2∠BCF=∠BAC.
(1)求∠ADE的度数.
(2)求证:直线CF是⊙O的切线.

查看答案和解析>>

同步练习册答案