精英家教网 > 初中数学 > 题目详情
(2009•保定二模)正方形ABCD中,点P是CD所在直线上一点,连接PA,分别过B、D作BE⊥PA、DF⊥PA,垂足分别为E、F.
(1)如图1,当点P在DC边上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(2)如图2,当点P在DC的延长线上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(3)如图3,当点P在CD的延长线上时,线段BE、DF、EF又具有怎样的数量关系,请直接写出结论(不必进行证明).
分析:(1)根据正方形的性质可知证出△ABE≌△ADF,利用全等三角形的性质,BE=AF,AE=DF,得出BE-DF=EF;
(2)同(1)可得出图(2)中DF-BE=EF;
(3)同(1)可得出图(3)中DF+BE=EF.
解答:解:(1)BE-DF=EF,
对图1中结论证明如下:
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中
∠BEA=∠AFD
∠BAE=∠ADF
AB=AD

∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF.

(2)DF=BE+EF,
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠DAF=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF,
∵AE=AF+EF,
∴DF=EB+EF.

(3)EF=BE+DF.
点评:此题主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•保定二模)一群小朋友阅读一批画册,如果2人合看一本,就有6人没有看的;如果3人合看一本,刚好余3本,设共有x名小朋友,y本画册,则下面所列方程组中,正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•保定二模)如图,AB是⊙O的直径,C是AB延长线上一点,BC=OB,CD切⊙O于D,则∠A的度数是
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•保定二模)已知a=2+
2
,求(
3a
a+1
-
a
a-1
)÷
a
a2-1
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•保定二模)如图所示,Rt△ABC中,∠C=90°,AC=6,BC=12,点P从点A出发沿AC边向点C以每秒1个单位的速度移动,点Q从点C出发沿CB边向点B以每秒1个单位的速度移动,点P、Q同时出发,设移动时间为t秒(t>0).
(1)求t为何值时,PQ∥AB;
(2)设△PCQ的面积为y,求y与t的函数关系式,并求出当t为何值时,△PCQ的面积最大,最大面积是多少;
(3)设点C关于直线PQ的对称点为D,求t为何值时,四边形PCQD是正方形;
(4)当得到正方形PCQD后,点P不再沿AC边移动,但正方形PCQD沿CB边向B点以每秒1个单位的速度移动,当点Q与点B重合时,停止移动,设运动中的正方形为MNQD,正方形MNQD与Rt△ABC重合部分的面积为S,求S与t的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

同步练习册答案