【题目】如图,矩形ABCD中,点E,F分别在边AD,CD上,且EF⊥BE,EF=BE,△DEF的外接圆⊙O恰好切BC于点G,BF交⊙O于点H,连结DH.若AB=8,则DH=_____.
【答案】7
【解析】
如图,连接OG,反向延长交DE于M,连接EH,过H作HN//BC,HP//CF,根据AAS可证明△BAE≌△EDF,即可得出DE=AB=8,由切线性质可知OG⊥BC,OM⊥DE,MG=AB=8,
由垂径定理可得ME的长,利用勾股定理可求出OE的长,进而可得OM的长,根据中位线的性质可得DF的长,根据等腰三角形的性质可得BH=HF,由HN//BC,HP//CF,∠C=90°可判定四边形HPCN是矩形,进而可得HP是△BFC的中位线,即可求出FN的长,进而可得DN的长,由圆周角定理可得∠EDH=45°,即可求出∠HDN=45°,即可证明△DHN是等腰直角三角形,即可求出DH的长.
如图,连接OG,反向延长交DE于M,连接EH,过H作HN//BC,HP//CF,
∵∠BEF=90°,ABCD是矩形,
∴∠ABE+∠AEB=90°,∠DEF+∠AEB=90°,
∴∠ABE=∠DEF,
又∵BE=EF,∠BAE=∠EDF=90°,
∴△BAE≌△EDF,
∴DE=AB=8,
∵⊙O切BC于G,
∴OG⊥BC,OM⊥DE,MG=AB=8,
∴ME=DE=4,
在Rt△OEM中,OE2=OM2+ME2,即OE2=(8-OE)2+42,
解得:OE=5,
∴OM=3,
∵OM是△DEF的中位线,
∴DF=2OM=6,
∴CF=8-6=2,
∵∠EDF=90°,⊙O是△DEF的外接圆,
∴EF是⊙O的直径,
∴∠EHF=90°,
∵BE=EF,
∴BH=HF,
∵HN//BC,HP//CF,∠C=90°,
∴四边形HPCN是矩形,
∴PH是△BFC的中位线,
∴PH=CN,PH=CF,
∴CN=1,FN=1,
∴DN=6+1=7,
∵∠BFE=∠EDH=45°,∠EDF=90°,
∴∠HDN=45°,
∴△DHN是等腰直角三角形,
∴DH=DN=7.
故答案为:7
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.
(1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;
(2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?
(3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段AB、CD在平面直角坐标系中位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a、b),则直线OP与线段CD的交点坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,②,在平面直角坐标系xoy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦, , P是x轴上的一动点,连结CP。
(1)求的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,抛物线y=a( x-4 )2-16(a>0)交x轴于点E,F(E在F的左边),交y轴于点C,对称轴MN交x轴于点H;直线y=x+b分别交x,y轴于点A,B.
(1)写出该抛物线顶点D的坐标及点C的纵坐标(用含a的代数式表示).
(2)若AF=AH=OH,求证:∠CEO=∠ABO.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是数值转换机的示意图,图②是小亮按照其对应关系画出的y与x的函数图象.已知点A的坐标为(0,3),点B的横坐标为4.
(1)求m、n的值.
(2)求输出y的最小值.
(3)当y=4时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com