【题目】请阅读下列材料:
小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .
请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边为 ;
(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,求AD的长.
【答案】(1)a
(2)∵△RQF,△SMG,△TNH,△WPE四个全等的等腰直角三角形面积和为,正方形ABCD的面积为,∴。
(3)
【解析】试题分析:(1)四个等腰直角三角形的斜边长为a,其拼成的正方形面积为a2,边长为a;
(2)如题图2所示,正方形MNPQ的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ的面积;
(3)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形△RSF,△QET,△PDW的面积和等于等边三角形△ABC的面积,故阴影三角形△PQR的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD的长度.
试题解析:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为a,
每个等腰直角三角形的面积为: a×a=a2,
则拼成的新正方形面积为:4×a2=a2,即与原正方形ABCD面积相等,
∴这个新正方形的边长为a;
(2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2,
∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4××12=2;
(3)如图1所示,分别延长RD,QF,PE,交FA,EC,DB的延长线于点S,T,W.
由题意易得:△RSF,△QET,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长.
不妨设等边三角形边长为a,则SF=AC=a.
如答图2所示,过点R作RM⊥SF于点M,则MF=SF=a,
在Rt△RMF中,RM=MFtan30°=a×=a,
∴S△RSF=img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/28/23/c8f2bc24/SYS201712282307356414948798_DA/SYS201712282307356414948798_DA.018.png" width="16" height="41" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />a×a=a2.
过点A作AN⊥SD于点N,设AD=AS=x,
则AN=ADsin30°=x,SD=2ND=2ADcos30°=x,
∴S△ADS=SDAN=×x×x=x2.
∵三个等腰三角形△RSF,△QET,△PDW的面积和=3S△RSF=3×a2=a2,
∴S△RPQ=S△ADS+S△CFT+S△BEW=3S△ADS,
∴=3×x2,得x2=,
解得x=或x=-(不合题意,舍去)
∴x=,即AD的长为.
科目:初中数学 来源: 题型:
【题目】把抛物线y=(x﹣1)2+2向左平移1个单位,再向下平移2个单位,所得抛物线是( )
A.y=x2
B.y=(x﹣2)2
C.y=(x﹣2)2+4
D.y=x2+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).
(1)点C的坐标是 ;
(2)将△ABC沿x轴正方向平移得到△A′ B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数的图象上,求该反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了多少名同学?
(2)条形统计图中,m= , n=;
(3)扇形统计图中,热词B所在扇形的圆心角是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去括号正确的是( )
A.a2﹣(a﹣b+c)=a2﹣a﹣b+c
B.5+a﹣2(3a﹣5)=5+a﹣6a+10
C.3a﹣ (3a2﹣2a)=3a﹣a2﹣ a
D.a3﹣[a2﹣(﹣b)]=a3﹣a2+b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有下列三个命题:
(1)两点之间线段最短
(2)平面内,过一点能且只能作一条直线与已知直线垂直
(3)过直线外一点有且只有一条直线与这条直线平行
其中真命题的个数是( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com