精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为

【答案】(2,4)或(3,4)或(8,4)
【解析】解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况: (i)如答图①所示,PD=OD=5,点P在点D的左侧.

过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE= = =3,
∴OE=OD﹣DE=5﹣3=2,
∴此时点P坐标为(2,4);
(ii)如答图②所示,OP=OD=5.

过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE= = =3,
∴此时点P坐标为(3,4);
(iii)如答图③所示,PD=OD=5,点P在点D的右侧.

过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE= = =3,
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).
所以答案是:(2,4)或(3,4)或(8,4).
【考点精析】关于本题考查的等腰三角形的性质和勾股定理的概念,需要了解等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°.Rt△DEF中,∠EDF=90°,∠E=45°).点D为AB的中点,DE交AC于点P,DF经过C,且BC=2.

1)求证:ADC∽△APD

2)求APD的面积;

3)如图②,将DEF绕点D顺时针方向旋转角60°),此时的等腰直角三角尺记为DE′F′DE′AC于点MDF′BC于点N,试判断的值是否会随着的变化而变化,如果不变,请求出的值;反之,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2bx经过A(2,0),B(3,-3)两点,抛物线的顶点为C,动点P在直线OB上方的抛物线上,过点P作直线PMy轴,交x轴于M,交OBN,设点P的横坐标为m

1求抛物线的解析式及点C的坐标

2当△PON为等腰三角形时,点N的坐标为 PMOCOB时,点P的坐标为 (直接写出结果)

(3)直线PN能否将四边形ABOC分为面积比为1:2的两部分?若能,请求出m的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(π﹣1) +|5﹣ |﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 以下调查中适合作抽样调查的有( ).

了解全班同学期末考试的数学成绩情况; 了解夏季冷饮市场上冰淇淋的质量情况;学校为抗击非典,需了解全校师生的体温; 了解《课课练》在全省七年级学生中受欢迎的程序.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个. 求:
(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)
(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(-a5)4(-a2)3________

查看答案和解析>>

同步练习册答案