精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC外作两个大小不同的等腰直角三角形,其中∠DAB=CAE=90°,AB=ADAC=AE。连结DCBE交于F点。

1)求证:△DAC≌△BAE

2)求证:DC⊥BE

3)求证:∠DFA=EFA.

【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

【解析】

(1)由题意可得AD=ABAC=AE,由∠DAB=CAE=90°,可得到∠DAC=BAE,从而可证△DAC≌△BAE

(2)(1)可得∠ACD=AEB,再利用直角三角形的性质及等量代换即可得到结论;

(3)AMDCMANBEN,利用全等三角形的面积相等及角平分线的判定即可证得结论.

证明:(1)∵

AC=AE

DAC≌△BAE

2DAC≌△BAE

ACD=AEB

(3)

的平分线,

.

故答案为:(1)证明见解析;(2)证明见解析;(3)证明见解析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】近年来,《政府工作报告》中不断提出了很多新的词汇,为了解学生们对新词汇的关注度,某数学兴趣小组选取其中的“互联网+政务服务”,“工匠精神”“光网城市”“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图:请根据统计图提供的信息,解答下列问题:

1)本次一共调查了多少名同学?

2)求出统计图中的值;

3)扇形统计图中,热词所在扇形统计图的圆心角分别是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,在△ABC中,AB=AC,DBC上一点,∠B=30°,连接AD.

(1)若∠BAD=45°,求证:△ACD为等腰三角形;

(2)若△ACD为直角三角形,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人共同计算一道整式乘法:(2xa)(3xb),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2-9x+10.请你计算出ab的值各是多少,并写出这道整式乘法的正确结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=8,BO=DO=6,点P为线段AC上的一个动点。

⑴ 填空:AD=CD=_____ .

⑵ 过点P分别作PM⊥AD于M点,作PH⊥DC于H点.连结PB,在点P运动过程中,PM+PH+PB的最小值为____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1A村和B村在一条大河CD的同侧,它们到河岸的距离ACBD分别为1千米和4千米,又知道CD的长为4千米.

1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选

方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2

方案2:作A点关于直线CD的对称点A',连接A'BCDM点,水厂建在M点处,分别向两村修管道AMBM.(即AM+BM)(如图3

从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.

2)有一艘快艇Q从这条河中驶过,当快艇QCD中间,DQ为多少时?ABQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,长方形ABCD的边ABy轴正半轴上,顶点A的坐标为(02),设顶点C的坐标为(ab).

1)顶点B的坐标为  ,顶点D的坐标为  (用ab表示);

2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y12成立,就说这个点的坐标是方程2x+3y12的解.已知顶点BD的坐标都是方程2x+3y12的解,求ab的值;

3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG

这次平移可以看成是先将长方形ABCD向右平移  个单位长度,再向下平移  个单位长度的两次平移;

若点Pmn)是对角线BD上的一点,且点P的坐标是方程2x+3y12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y12的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的13倍

1求普通列车的行驶路程;

2若高铁的平均速度千米/时是普通列车平均速度千米/时的25倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王剪了两张直角三角形纸片,进行了如下的操作:

(1)如图1,将RtABC沿某条直线折叠,使斜边的两个端点AB重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.

(2)如图2,小王拿出另一张RtABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长

查看答案和解析>>

同步练习册答案