精英家教网 > 初中数学 > 题目详情

【题目】某商店从厂家以每件21元的价格购进一批商品。若每件商品的售价为元,则可卖出件,但物价局限定每件商品的售价不能超过进价的120%。若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?

【答案】该商店需要卖出100件商品,此时每件商品的售价是25元

【解析】

设商品的售价为x,根据等量关系:商品的单件利润=售价-进价;单价利润×销售的件数=总利润,列出方程求出未知数的值后,根据“物价局限定每次商品加价不能超过进价的20%”将不合题意的舍去,进而求出卖的商品的件数.

(1)由题意得:

整理得:

解得:

,即售价不能超过25.2元。

不合题意,应当舍去。

,从而卖出(件)

答:该商店需要卖出100件商品,此时每件商品的售价是25元。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面直角坐标系内一点Mx,y)(x≠0),若则称k为点M倾斜比,如图,⊙By轴相切于点A,点B坐标为(3,5),P为⊙B上的动点,则点P倾斜比”k的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过ACD三点的圆OAB于点E,连接DECE,∠BCE=∠CDE

1)求证:直线BC为圆O的切线;

2)猜想ADCE的数量关系,并说明理由;

3)若BC2,∠BCE30°,求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;

(3)登山多长时间时,甲、乙两人距地面的高度差为70米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点C和点D的坐标;

(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,yx满足如下关系:

(1)工人甲第几天生产的产品数量为70件?

(2)设第x天生产的产品成本为P/件,P的函数图象如图.工人甲第x天创造的利润为W元,求Wx的函数关系式,并求出第几天时利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点FDE的延长线上,∠BFE=90°,连接AF、CF,CFAB交于G.有以下结论:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给.

1)求第一轮后患病的人数;(用含的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°,⊙O是△ABC的外接圆,点D上一点,过点C作⊙O的切线PC,直线PCBA的延长线于点P,交BD的延长线于点E

1)求证:∠PCA=∠PBC

2)若PC8PA4,∠ECD=∠PCA,以点C为圆心,半径为5作⊙C,试判断⊙C与直线BD的位置关系.

查看答案和解析>>

同步练习册答案