精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点A(-2,0)点B(0,4),OB的垂直平分线  CE与OA的垂直平分线CD相交于点C,现存在点F,会使得△CDF≌△0AB,写出点F的坐标
 
考点:全等三角形的判定,坐标与图形性质
专题:
分析:根据点A、B的坐标求出OA、OB的长,再根据线段垂直平分线的定义求出OD、OE的长,然后判断出四边形CDOE是矩形,然后写出点C的坐标,分:①点C是直角顶点时,根据全等三角形对应边相等可得CF=OB;②点D是直角顶点,根据全等三角形对应边相等可得DF=OB;然后分别分两种情况写出点F的坐标即可.
解答:解:∵点A(-2,0)点B(0,4),
∴OA=2,OB=4,
∵OB的垂直平分线CE,与OA的垂直平分线CD相交于点C,
∴OD=
1
2
OA=
1
2
×2=1,OE=
1
2
OB=
1
2
×4=2,
∴点C(-1,2),
①点C是直角顶点时,
如图,∵△CDF≌△0AB,
∴CF=OB=4,
点F在CD右边时,F1(3,2),
点F在CD左边时,F2(-5,2);
②点D是直角顶点时,
∵△CDF≌△A0B,
∴DF=OB=4,
点F在CD右边时,F3(3,0),
点F在CD左边时,F4(-5,0);
综上所述,存在点F1(3,2),F2(-5,2),F3(3,0),F4(-5,0),使得△CDF≌△0AB.
故答案为:(3,2),(-5,2),(3,0),(-5,0).
点评:本题考查了全等三角形的判定与性质,线段垂直平分线的性质,坐标与图形,难点在于要分情况讨论,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

把下列多项式分解因式:
(1)x3-xy2                 
(2)2a2+4ab+2b2

查看答案和解析>>

科目:初中数学 来源: 题型:

下列合并同类项正确的是(  )
A、3x+y=4xy
B、2x2+3x2=5x4
C、6x2-3x2=3
D、5xy-3xy=2xy

查看答案和解析>>

科目:初中数学 来源: 题型:

关于x的多项式-4x2+mx+nx2-3x+10的值与x无关,求5m-2n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个圆锥的侧面展开图的圆心角为180°,且它的母线长为4cm,那么它的底面圆半径为(  )
A、
1
2
cm
B、1cm
C、
3
2
cm
D、2cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(n)个图形中面积为1的正方形的个数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若圆锥的高为6cm,底圆半径为8cm,则圆锥的侧面积为
 
.(用含π的结果表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,BD平分∠ABC,EF垂直平分BD,交CA的延长线于点E,求证:∠EAB=∠EBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

a+b-c-d=(a-d)-(
 
).

查看答案和解析>>

同步练习册答案