【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣ x+b与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
【答案】
(1)
解:∵y=a(x+3)(x﹣1),
∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
∵直线y=﹣ x+b经过点A,
∴b=﹣3 ,
∴y=﹣ x﹣3 ,
当x=2时,y=﹣5 ,
则点D的坐标为(2,﹣5 ),
∵点D在抛物线上,
∴a(2+3)(2﹣1)=﹣5 ,
解得,a=﹣ ,
则抛物线的解析式为y=﹣ (x+3)(x﹣1)=﹣ x2﹣2 x+3
(2)
解:
作PH⊥x轴于H,
设点P的坐标为(m,n),
当△BPA∽△ABC时,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即 ,
∴ ,即n=﹣a(m﹣1),
∴ ,
解得,m1=﹣4,m2=1(不合题意,舍去),
当m=﹣4时,n=5a,
∵△BPA∽△ABC,
∴ ,即AB2=ACPB,
∴42= ,
解得,a1= (不合题意,舍去),a2=﹣ ,
则n=5a=﹣ ,
∴点P的坐标为(﹣4,﹣ );
当△PBA∽△ABC时,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即 ,
∴ ,即n=﹣3a(m﹣1),
∴ ,
解得,m1=﹣6,m2=1(不合题意,舍去),
当m=﹣6时,n=21a,
∵△PBA∽△ABC,
∴ ,即AB2=BCPB,
∴42= ,
解得,a1= (不合题意,舍去),a2=﹣ ,
则点P的坐标为(﹣6,﹣ ),
综上所述,符合条件的点P的坐标为(﹣4,﹣ )和(﹣6,﹣ )
(3)
解:
作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
则tan∠DAN= = ,
∴∠DAN=60°,
∴∠EDF=60°,
∴DE= EF,
∴Q的运动时间t= =BE+EF,
∴当BE和EF共线时,t最小,
则BE⊥DM,y=﹣4 .
【解析】(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.本题考查的是二次函数知识的综合运用,掌握二次函数的性质、二次函数的交点式、相似三角形的判定定理和性质定理是解题的关键,解答时,注意分情况讨论思想的灵活运用.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:
(1)本次共调查了_ 名初中毕业生;
(2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;
(3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,.
(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:;
(2)在图②中作,使它满足以下条件:
①圆心在边上;②经过点;③与边相切.
(尺规作图,只保留作图痕迹,不要求写出作法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣ x+2 与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和 个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.
(1)求点A,点B的坐标;
(2)用含t的代数式分别表示EF和AF的长;
(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.
(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.
甲型 | 乙型 | |
价格(元/台) | a | b |
有效半径(米/台) | 150 | 100 |
(1)求a、b的值;
(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】10月21日,“中国流动科技馆”巡展启动仪式在新华区青少年活动中心盛大举行,此次巡展以“体验科学”为主题.该区某中学举行了“科普知识”竞赛,为了解此次“科普知识”竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示.请根据图表信息解答以下问题.
组别 | 成绩/分 | 频数 |
A组 | ||
B组 | 12 | |
C组 | 18 | |
D组 | 21 |
(1)表中一共抽取了________个参赛学生的成绩;________;
(2)求出计算扇形统计图中“”的圆心角度数.
(3)若成绩在90分以上(包括90分)的为“优”等,已知该校共有1200名学生,请你估计该校约有多少名学生的成绩是“优”等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com