精英家教网 > 初中数学 > 题目详情

【题目】为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.

甲型

乙型

价格(元/台)

a

b

有效半径(米/台)

150

100

1)求ab的值;

2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.

【答案】(1)a=850,b=700;(2)最省钱的购买方案为:购甲型设备2台,乙型设备13台.

【解析】

1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到ab的值;

2)可设购买甲型设备x台,则购买乙型设备(15x)台,根据购买该批设备的资金不超过11000元、监控半径覆盖范围不低于1600米,列出不等式组,根据x的值确定方案,然后对所需资金进行比较,并作出选择.

解:(1)由题意得:

解得

2)设购买甲型设备x台,则购买乙型设备(15x)台,依题意得

解不等式①,得:x3

解不等式②,得:x2

2x3

x取值为23

x2时,购买所需资金为:850×2+700×1310800(元),

x3时,购买所需资金为:850×3+700×1210950(元),

∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一件文化衫价格为18元,一个书包的价格比一件文化衫价格的2倍还少6元.

(1)求一个书包的价格是多少元?

(2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣ x+b与抛物线的另一个交点为D.

(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分

(1)求过A,B,E三点的抛物线的解析式;
(2)求证:四边形AMCD是菱形;
(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)四边形ABCD中,已知∠ABC+ADC180°,ABADDAAB,点ECD的延长线上,∠BAC=∠DAE

1)求证:△ABC≌△ADE

2)求证:CA平分∠BCD

3)如图(2),设AF是△ABCBC边上的高,求证:EC2AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:

碟子的个数

碟子的高度(单位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);

2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点

写出下一步“马”可能到达的点的坐标为_ (写出所有可能的点的坐标)

顺次连接中的所有点,得到的图形是 _图形(填“中心对称”或“轴对称”;

中得到的图形各顶点的坐标都乘以请在平面直角坐标系中画出变化后的图形,并与原图形比较,形状和大小有怎样的变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.

(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;
(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;
(3)延长AD、BO相交于点E,求证:DE=CO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在矩形ABCD中,AB<AD,对角线ACBD相交于点O,动点P由点A出发,沿AB-BC→CD向点D运动设点P的运动路程为xAOP的面积为yyx的函数关系图象如图②所小示,则AD的长为________.

查看答案和解析>>

同步练习册答案