精英家教网 > 初中数学 > 题目详情

【题目】已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.

(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;
(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;
(3)延长AD、BO相交于点E,求证:DE=CO.

【答案】
(1)解:如图1,

∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,
∴A与B是对称点,O是抛物线的顶点,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∵AB=2,AB⊥OC,
∴AC=BC=1,∠BOC=30°,
∴OC=
∴A(-1, ),
把A(-1, )代入抛物线y=ax2(a>0)中得:a=
(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,

∵CF∥BG,

∵AC=4BC,
=4,
∴AF=4FG,
∵A的横坐标为-4,
∴B的横坐标为1,
∴A(-4,16a),B(1,a),
∵∠AOB=90°,
∴∠AOD+∠BOE=90°,
∵∠AOD+∠DAO=90°,
∴∠BOE=∠DAO,
∵∠ADO=∠OEB=90°,
∴△ADO∽△OEB,


∴16a2=4,
a=±
∵a>0,
∴a=
∴B(1, );
(3)解:如图3,

设AC=nBC,
由(2)同理可知:A的横坐标是B的横坐标的n倍,
则设B(m,am2),则A(-mn,am2n2),
∴AD=am2n2
过B作BF⊥x轴于F,
∴DE∥BF,
∴△BOF∽△EOD,


,DE=am2n,

∵OC∥AE,
∴△BCO∽△BAE,


∴CO= =am2n,
∴DE=CO.
【解析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。
(2)过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,根据平行线分线段成比例证出AF=4FG,根据点A的横坐标为﹣4,求出点B的横坐标为1,则A(-4,16a),B(1,a),再根据已知证明∠BOE=∠DAO,∠ADO=∠OEB,就可证明△ADO∽△OEB,得出对应边成比例,建立关于a的方程求解,再根据点B在第一象限,确定点B的坐标即可。
(3)根据(2)可知A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),得出AD的长,再证明△BOF∽△EOD,△BCO∽△BAE,得对应边成比例,证得CO=am2n,就可证得DE=CO。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,

1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:

2)在图②中作,使它满足以下条件:

①圆心在边上;②经过点;③与边相切.

(尺规作图,只保留作图痕迹,不要求写出作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.

甲型

乙型

价格(元/台)

a

b

有效半径(米/台)

150

100

1)求ab的值;

2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)3()()()

(2)25.7(7.3)(13.7)7.3

(3)(2.125)()()(3.2)

(4)(0.8)6.4(9.2)3.6(1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.

(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是(

30

2 sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1


A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1021日,中国流动科技馆巡展启动仪式在新华区青少年活动中心盛大举行,此次巡展以体验科学为主题.该区某中学举行了科普知识竞赛,为了解此次科普知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示.请根据图表信息解答以下问题.

组别

成绩/

频数

A

B

12

C

18

D

21

1)表中一共抽取了________个参赛学生的成绩;________

2)求出计算扇形统计图中的圆心角度数.

3)若成绩在90分以上(包括90分)的为等,已知该校共有1200名学生,请你估计该校约有多少名学生的成绩是等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励市民节约用电,小亮家所在地区规定:每户居民如果一个月的用电量不超过度,那么这户居民这个月只需交元电费;如果超过度,则这个月除了仍要交元的电费以外,超过的部分还要按每度元交电费.已知小亮家月份用电度,交电费元;月份用电度,交电费元.

1)请直接写出小亮家月份超过度部分的用电量(用含的代数式表示);

2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平整的地面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.

(1)请画出这个几何体的三视图;

(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 ________个正方体只有一个面是黄色,有 __________个正方体只有两个面是黄色,有 ________个正方体只有三个面是黄色.

(3)若现在你手头还有一些相同的小正方体,如果保持图的几何体的俯视图和左视图不变,最多可以再添加几个小正方体?

查看答案和解析>>

同步练习册答案