分析 (1)利用垂直的定义和平行线的性质可证明∠DFE=∠DEA=90°,则利用相似三角形的判定方法可判断△EDF∽△ADE;
(2)由于△EDF∽△ADE,则利用相似比可得到DE2=DF•DA,再利用角平分线的性质定理得到DE=DC,从而得到线段DC,DF、DA之间的关系.
解答 (1)证明:∵DE⊥AB,
∴∠AED=90°,
∵EF∥BC,
∴∠AFE=∠C=90°,
∴∠DFE=∠DEA,
而∠FDE=∠EDA,
∴△EDF∽△ADE;
(2)解:DC2=DF•DA.理由如下:
∵△EDF∽△ADE,
∴DE:DA=DF:DE,
即DE2=DF•DA,
∵BD平分∠ABC,DE⊥AB,DC⊥BC,
∴DE=DC,
∴DC2=DF•DA.
点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.解决本题的关键是利用相似三角形比得到DE、DF、DA的关系.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{32}{3}\sqrt{3}-4π$ | B. | $\frac{32}{3}\sqrt{3}-2π$ | C. | 16-4π | D. | 16-2π |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 只有①② | B. | 只有①③ | C. | 只有①②③ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com