精英家教网 > 初中数学 > 题目详情

【题目】感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D,F分别在边AC,BC上,易证:AD=BF(不需要证明);

(1)探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD,BF,其他条件不变,如图②,求证:AD=BF;
(2)应用:若α=45°,CD= ,BE=1,如图③,则BF=

【答案】
(1)

证明:如图②,

∵四边形CDEF为正方形,

∴CD=CF,

由旋转得:∠ACD=∠BCF,

∵△ABC是等腰直角三角形,∠ACB=90°,

∴AC=BC,

∴△ADC≌△BFC,

∴AD=BF;


(2)
【解析】应用:如图③,∵四边形CDEF为正方形,
∴∠EDC=90°,ED=DC,
∵DC=
∴EC= = =2,
∴BC=BE+EC=1+2=3,
∴AC=BC=3,
过D作DG⊥AC于G,
∵α=45°,
即∠ACD=45°,
∴△DCG是等腰直角三角形,
∴DG=CG=1,
∴AG=BC﹣CG=3﹣1=2,
由勾股定理得:AD= = =
同理得:△ADC≌△BFC,
∴BF=AD=

【考点精析】通过灵活运用等腰直角三角形和勾股定理的概念,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3)

(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在P点,使△PCD是以CD为腰的等腰三角形,如果存在,直接写出点P的坐标,如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,
①求直线BC 的解析式;
②当点E运动到什么位置时,四边形CDBF的面积最大?求四边形CDBF的最大面积及此时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC,AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以正方形ABCD的边AD作等边ADE,则∠BEC的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACDE分别为ABAC上的点,∠BDECED的平分线分别交BC于点FGEGAB.若∠BGE=110°,则∠BDF的度数为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AEBD交于点F,

(1)如图1,若∠ACD=60°,则∠AFB=   ;如图2,若∠ACD=90°,则∠AFB=   ;如图3,若∠ACD=120°,则∠AFB=   

(2)如图4,若∠ACD=α,则∠AFB=   (用含α的式子表示);

(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFBα的有何数量关系?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A,B,O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于下列各组条件,不能判定≌△的一组是

A. A=A′B=B′AB=A′B′

B. A=A′AB=A′B′AC=A′C′

C. A=A′AB=A′B′BC=B′C′

D. AB=A′B′AC=A′C′BC=B′C′

查看答案和解析>>

同步练习册答案