精英家教网 > 初中数学 > 题目详情
(1)如图1,OC平分∠AOB,点P在OC上,若⊙P与OA相切,那么⊙P与OB位置关系是     

(2)如图2,⊙O的半径为2,∠AOB=120°,
①若点P是⊙O上的一个动点,当PA=PB时,是否存在⊙Q,同时与射线PA.PB相切且与⊙O相切,如果存在,求出⊙Q的半径; 如果不存在,请说明理由.
②若点P在BO的延长线上,且满足PA⊥PB,是否存在⊙Q,同时与射线PA.PB相切且与⊙O相切,如果存在,请直接写出⊙Q的半径; 如果不存在,请说明理由.
(1)相切;(2)①存在,半径可以为,4 ,,;②存在.其半径可以为1,

试题分析:(1)作PD⊥OA于A,PE⊥OB于B,则根据角平分线定义得到PD=PE,根据切线的性质由⊙P与OA相切得到PD为⊙P的半径,然后根据切线的判定定理可得到OB为⊙P的切线;
(2)①由PA=PB得到点P为∠AOB的平分线或反向延长线与⊙O的交点,分类讨论:当P点在优弧AB上时,当P点在劣弧AB上时,然后解四个方程即可得到满足条件的⊙Q的半径;
②作QH⊥PB于H,由PA⊥PB得∠APB=90°,由⊙Q与射线PA.PB相切,根据切线的性质得PQ平分∠APB,即∠QPH=45°,所以QH=PH,在Rt△POA中易得OP=1,设⊙Q的半径为r,即PH=QH=r,则OH=PH﹣OP=r﹣1,在Rt△OQH中,根据勾股定理得OQ2=OH2+QH2=(r﹣1)2+r2,
若⊙Q与⊙O内切时,OQ=2﹣r,得到(2﹣r)2=(r﹣1)2+r2,若⊙Q与⊙O外切时,OQ=2+r,得到(2+r)2=(r﹣1)2+r2,然后解两个方程即可得到满足条件的⊙Q的半径.
试题解析:(1)作PD⊥OA于A,PE⊥OB于B,如图1,
∵OC平分∠AOB,
∴PD=PE,
∵⊙P与OA相切,
∴PD为⊙P的半径,
∴PE为⊙的半径,
而PE⊥OB,
∴OB为⊙P的切线;
故⊙P与OB位置关系是相切;
(2)①存在
∵PA=PB,
∴点P为∠AOB的平分线或反向延长线与⊙O的交点,
如图2,
当P点在优弧AB上时, 设⊙Q的半径为,
若⊙Q与⊙O内切,可得,解得 ,
若⊙Q与⊙O外切,可得, 解得 ,
当P点在劣弧AB上时,
同理可得:x=,x= ,
综上所述,存在⊙Q,半径可以为,4 ,,;
②存在.作QH⊥PB于H,如图3,
∵PA⊥PB,
∴∠APB=90°,
∵⊙Q与射线PA.PB相切,
∴PQ平分∠APB,
∴∠QPH=45°,
∴△QHP为等腰直角三角形,
∴QH=PH,
在Rt△POA中,∠AOP=60°,OA=2,
∴OP=1,
设⊙Q的半径为r,即PH=QH=r,则OH=PH﹣OP=r﹣1,
在Rt△OQH中,OQ2=OH2+QH2=(r﹣1)2+r2,
若⊙Q与⊙O内切时,OQ=2﹣r,则(2﹣r)2=(r﹣1)2+r2,解得r1=1,r2=﹣3(舍去);
若⊙Q与⊙O外切时,OQ=2+r,则(2+r)2=(r﹣1)2+r2,解得r1=,r2=(舍去);
综上所述,存在⊙Q,其半径可以为1,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.
(1)如图①,当PA的长度等于    时,∠PAB=60°;当PA的长度等于     时,△PAD是等腰三角形;
(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出此时a,b的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt中,,以AC为直径的⊙O交AB于点D,E是BC的中点.

(1)求证:DE是⊙O的切线;
(2)过点E作EF⊥DE,交AB于点F.若AC=3,BC=4,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于(  )

A.30°      B.35°        C.40°       D.50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,,且∠A=60°,半径OB=2,则下列结论不正确的是(  )
A.∠B=60°B.∠BOC=120°
C.的度数为240°D.弦BC=

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是(   )
A.相交B.相切C.相离D.不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在⊙O中,直径AB⊥弦CD于点M,AB=26,OM=5,则CD的长为____ ___.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,的内接三角形,的内接正方形的面积为(   )
A.2B.4C.8D.16

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,C为⊙O上一点,CD⊥半径OA于点D,CE⊥半径OB于点E,CD=CE,则弧AC与弧BC的弧长的大小关系是                 .

查看答案和解析>>

同步练习册答案