解:(1)如图(共有2种不同的分割法).

(2)设∠ABC=y,∠C=x,过点B的直线交边AC于D.在△DBC中,

①若∠C是顶角,如图1,则∠ADB<90°,∠CBD=∠C=

(180°-x)=90°-

x,∠A=180°-x-y.
此时只能有∠A=∠ABD,即180°-x-y=y-(90°-

x),
∴3x+4y=540°,即∠ABC=135°-

∠C.
②若∠C是底角,
第一种情况:如图2,当DB=DC时,则∠DBC=x,△ABD中,∠ADB=2x,∠ABD=y-x.
由AB=AD,得2x=y-x,此时有y=3x,即∠ABC=3∠C.
由AB=BD,得180°-x-y=2x,此时3x+y=180°,即∠ABC=180°-3∠C.
由AD=BD,得180°-x-y=y-x,此时y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.
第二种情况,如图3,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,
从而∠A=∠ABD=

∠C<∠C,这与题设∠C是最小角矛盾.

∴当∠C是底角时,BD=BC不成立.
综上,∠ABC与∠C之间的关系是:∠ABC=135°-

∠C.
或∠ABC=3∠C.
分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.
(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.
点评:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.
第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.