分析 由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.
解答 证明:∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
$\left\{\begin{array}{l}{DE=BF}&{\;}\\{∠AED=∠CFB}&{\;}\\{AE=CF}&{\;}\end{array}\right.$,
∴△ADE≌△CBF(SAS),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC
∴四边形ABCD是平行四边形.
点评 本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 选择意向 | 文学欣赏 | 科学实验 | 音乐艺术 | 手工制作 | 体育运动 | 其他 |
| 所占百分比 | a | 22.5% | b | 10% | 20% | 2.5% |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com