精英家教网 > 初中数学 > 题目详情
如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=   度.
解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,
∴△BCP≌△DCP(SAS)。
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP。
∵PE=PB,∴∠CBP=∠E。∴∠DPE=∠DCE。

∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE。
∵AB∥CD,
∴∠DCE=∠ABC。
∴∠DPE=∠ABC。
(3)58

试题分析:(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可。
(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证。
(3)根据(2)的结论解答:
与(2)同理可得:∠DPE=∠ABC,
∵∠ABC=58°,∴∠DPE=58°。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.

(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的
一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运
动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是
A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川绵阳3分)下列说法正确的是【   】
A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直的梯形是等腰梯形
C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=
A.B.C.2D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.

(1)求证:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=cm,则EF+CF的长为     cm。

查看答案和解析>>

同步练习册答案