精英家教网 > 初中数学 > 题目详情

【题目】.某商场为缓解停车难问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

【答案】小亮说得对,CE2.7m.

【解析】

先根据CEAE,判断出CE为高,再根据解直角三角形的知识解答.

解:在ABD,ABD=90°,BAD=18°,BA=10,

tanBAD=,BD=10×tan18°.

CD=BD-BC=10×tan18°-0.5≈2.8(m).

ABD,CDE=90°-BAD=72°.

CEED,∴∠DCE=18°.cosDCE=

CE=CD×cosCDE=2.8×cos18°≈2.7(m).

2.7m<2.8m,CEAE,∴小亮说得对.

因此,小亮说得对,CE2.7m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点AB的坐标分别为(80)、(02),CAB的中点,过点Cy轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点Px轴的垂线,垂足为E,连接BPEC.当BP所在直线与EC所在直线垂直时,点P的坐标为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙OBC边相切于点D,连结AD.

1)求证:AD是∠BAC的平分线;

2)若AC=3BC=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题正确的个数是

若代数式有意义,则x的取值范围为x≤1x≠0

我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.

若反比例函数m为常数),当x0时,yx增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.

若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3y=2x+1y=x2中偶函数的个数为2个.

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现)x45x2+40是一个一元四次方程.

(探索)根据该方程的特点,通常用“换元法”解方程:

x2y,那么x4y2,于是原方程可变为   

解得:y11y2   

y1时,x21,∴x=±1

y   时,x2   ,∴x   

原方程有4个根,分别是   

(应用)仿照上面的解题过程,求解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用AB两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.13分)

1)设A型货车安排x辆,总运费为y万元,写出yx的函数关系式;

2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排AB两种型号货车一次性运完这批茶叶,共有哪几种运输方案?

3)说明哪种方案运费最少?最少运费是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的弦,OP⊥OAAB于点P,过点B的直线交OP的延长线于点C,且CP=CB

1)求证:BC⊙O的切线;

2)若⊙O的半径为OP=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点延长线上一点,连接,过分别作,垂足为,交于点,作,垂足为,交于点

1)求证:

2)如图,点的延长线上,且,连接并延长交于点,求证:

3)在(2)的条件下,当时,请直接写出的值为____________________

查看答案和解析>>

同步练习册答案