精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的弦,OP⊥OAAB于点P,过点B的直线交OP的延长线于点C,且CP=CB

1)求证:BC⊙O的切线;

2)若⊙O的半径为OP=1,求BC的长.

【答案】1)证明见解析;(22

【解析】

试题(1)、连接OB,根据OP⊥OACP=CB得出∠CPB=∠APO,根据OA=OB得出∠A=∠OBA,然后根据∠OBC=∠CBP+∠OBA=∠APO+∠A=90°得出切线;(2)、设BC=x,则PC=xOC=x+1,然后根据Rt△OBC的勾股定理求出x的值,从而得出BC的长度.

试题解析:(1)、连结OB,如图,

∵OP⊥OA

∴∠AOP=90°

∴∠A+∠APO=90°

∵CP=CB

∴∠CBP=∠CPB

∠CPB=∠APO

∴∠APO=∠CBP

∵OA=OB

∴∠A=∠OBA

∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°

∴OB⊥BC

∴BC⊙O的切线;

2)、设BC=x,则PC=x

Rt△OBC中,OB=OC=CP+OP=x+1

∵OB2+BC2=OC2

2+x2=x+12

解得x=2

BC的长为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,一次函数为常数,)的图像与轴、轴分别相交于点,半径为4的⊙轴正半轴相交于点,与轴相交于点,点在点上方.

1)若直线与弧有两个交点.

①求的度数;

②用含的代数式表示,并直接写出的取值范围;

2)设,在线段上是否存在点,使?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,PCB边上一动点,连接AP,作PQAPABQ.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.

小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.

下面是小青同学的探究过程,请补充完整:

(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;

x/cm

0

0.5

1.0

1.5

2.0

2.5

3

3.5

4

4.5

5

6

y/cm

0

1.56

2.24

2.51

m

2.45

2.24

1.96

1.63

1.26

0.86

0

(说明:补全表格时,相关数据保留一位小数)

m的值约为多少cm;

(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象

(3)结合画出的函数图象,解决问题:

①当y>2时,写出对应的x的取值范围;

②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点A(0,4),B(0,﹣6),Cx轴正半轴上一点,且满足∠ACB=45°,则(  )

A. △ABC外接圆的圆心在OC

B. ∠BAC=60°

C. △ABC外接圆的半径等于5

D. OC=12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ORtABC斜边AB上的一点,以OA为半径的⊙OBC切于点D,与AC交于点E,连接AD

1)求证:AD平分∠BAC

2)若∠BAC60°OA2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣10),B0,﹣),C20),其对称轴与x轴交于点D

1)求二次函数的表达式及其顶点坐标;

2)若Py轴上的一个动点,连接PD,求PB+PD的最小值;

3Mxt)为抛物线对称轴上一动点

①若平面内存在点N,使得以ABMN为顶点的四边形为菱形,则这样的点N共有   个;

②连接MAMB,若∠AMB不小于60°,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;

(2)在抛物线上存在一点P使ABP的面积为10,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AB4BC5CA6.

(1)如果DE10,那么当EF________FD________时,△DEF∽△ABC

(2)如果DE10,那么当EF________FD________时,△FDE∽△ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;

(2)求反比例函数的解析式和n的值;

(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

查看答案和解析>>

同步练习册答案